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Introduction
The advent of the web and online social networks (OSN) has created an unprecedented 
amount of accessible information. These tools have given everyone the chance to 
become a news medium by setting up a website, a blog, or simply creating an account 
on an OSN, thus enlarging the offer with a significant number of individual uncontrolled 
contributions. News generation and circulation have become easier than ever: moreover, 
the lack of a structured control on user generated contents facilitated the diffusion of 
misleading, bogus, and inaccurate information, often grouped under the umbrella term 
“fake news”.

Fake news proliferation is a significant threat to democracy, journalism, and free-
dom of expression and the debate around them and its potentially damaging effects 
on public opinion and democratic decision making is complex and multifaceted 
(Watts et al. 2021; Lazer et al. 2018; Wardle and Derakhshan 2017). Their spread has 
weakened the confidence of the population in governments: vivid examples of such 
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effects can be seen, for instance, in the impact that they have had on the “Brexit” 
referendum and the 2016 US presidential elections (Hoferer et  al. 2020; Bovet and 
Makse 2019). Like all controversial pieces of information, fake news usually polar-
izes the public debate—-both online and offline—with the side effect of radicalizing 
population opinions, thus reducing the chances of reaching a synthesis of oppos-
ing views. Moreover, stubborn agents’—as firstly introduced in Wu and Huberman 
(2004), Mobilia (2003) and Galam (2016)—existence amplifies such phenomena by 
fostering—either for personal gain, lack of knowledge, or excessive ego—their point 
of view, disregarding the existence of sound opposing arguments or, even, debunking 
evidence.

So far, the leading efforts to understand and counter the effects of misleading infor-
mation were devoted to (1) identifying fake news and its sources, (2) debunk them, 
and (3) studying how they spread. Indeed, the analysis of how fake news diffuse is 
probably the most difficult task to address. Even when restricting the analysis on 
the online world, tracing the path of content shared by users of online platforms is 
not always feasible (at least extensively). Moreover, such an analysis becomes nearly 
impossible when considering that news can diffuse across multiple services—of which 
we can usually have only a partial view.

However, two different aspects need to be addressed to properly understand how 
news (fake or legit) spread: (1) how different individuals get in touch with them, and 
(2) how the population reached by such contents perceives them. Effective news 
reaches a broad audience and is also able to convince such an audience of its message. 
The latter component goes beyond the mere spreading process that allows news to 
become viral: it strictly relates to individuals’ perceptions, opinions whose consolida-
tion is due not only to the news’ content but also to the social context in which they 
diffuse.

In this work, moving from my previous work (Toccaceli et al. 2020) and from such 
observation, I propose a family of opinion dynamics models to understand the role of 
specific social factors on the acceptance/rejection of news contents. Assuming a pop-
ulation composed of agents aware of a given piece of information - each starting with 
a predefined attitude toward it—I study how different social interaction patterns lead 
to the consensus or polarization of opinions. In particular, I model and discuss the 
effect that stubborn agents, different levels of trust among individuals, open-mind-
edness, attraction/repulsion phenomena [such previously discussed in Flache et  al. 
(2017)], and similarity between agents have on the population dynamics of news per-
ception. Even if applicable to any controversial news content, my study will be framed 
in the fake news diffusion setting, being such a particular context a vivid example of 
the relevance of opinion dynamics for societal effects.

The paper is organized as follows. In “Related Works” section, I discuss the relevant 
literature to my work; subsequently, in “Opinion Dynamic Modeling of News Percep-
tion” section, I describe the opinion dynamics models I designed to study news per-
ception’s evolution. In “Experiments” section, I present an analysis of the proposed 
models on synthetic networks having heterogeneous characteristics. Finally, “Conclu-
sion” section concludes the paper by summarizing my results and underlying future 
research directions.
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Related Works
To better contextualize my study two different, yet related topics need to be reviewed: 
(1) research on fake news and their characterization, and (2) opinion dynamics 
modeling.

Fake News Characterization

Indeed, since I am using fake news as an example of the contents that generate pecu-
liar opinion dynamics, it is important to briefly discuss what they are and which are 
the lines of research that focus on them. Unfortunately, scientific literature does not 
converge on a unique and universal definition of fake news, rather it provides sev-
eral contextualized descriptions and taxonomies. As an example, Allcott and Gentz-
kow (2017) defines “fake news” as “news articles that are intentionally and verifiably 
false, and could mislead readers”; instead, Lazer et  al. (2018) pictures them as “fab-
ricated information that mimics news media content in form but not in organiza-
tional process or intent”. Finally, the authors of Zhang and Ghorbani (2020) specify 
that “fake news refers to all kinds of false stories or news that are mainly published 
and distributed on the Internet, in order to purposely mislead, befool or lure read-
ers for financial, political or other gains.” In this work I align with the first of the 
reported definitions—fake news as news articles that are intentionally false and at 
the same time easily verifiable and that can mislead readers. Indeed, identifying the 
components that characterize fake news is an open and challenging issue (Zhang and 
Ghorbani 2020). Moreover, to address unreliable content online, several approaches 
have been designed: most of them propose detecting bogus contents or their crea-
tors. Focusing on the analysis involving fake news, we can identify different fields of 
research: content analysis [e.g., fake news identification (Sharma et  al. 2019; Alam 
et al. 2021)], creator analysis [e.g., bots detection (Cresci et al. 2016; Caldarelli et al. 
2020)], evaluation of the presence of d/misinformation campaigns (Hernon 1995), 
propaganda (Nakov and Martino Da San 2020), and echo-chamber (Cinelli et al. 2021; 
Garimella et  al. 2018; Ge et  al. 2020; Hilbert et  al. 2018; Morales et  al. 2021) and, 
social context analysis [e.g., the effect of the fake news and their spread on society 
(Visentin et al. 2019)].

Opinion Dynamics

Opinion-forming processes have attracted the interest of interdisciplinary experts. 
Humans have opinions on everything that surrounds them: opinions that are influ-
enced by several factors, such as individual predisposition, information possessed, 
and interaction with other subjects. In Si and Li (2018), opinion dynamics is defined 
as the process that “attempts to describe how individuals exchange opinions, per-
suade each other, make decisions, and implement actions, employing diverse tools 
furnished by statistical physics, e.g., probability and graph theory”. Opinion dynamics 
models are often devised to understand how certain assumptions on human behav-
iors can explain alternative scenarios, namely consensus, polarization, or fragmenta-
tion. In a population, we say that consensus is reached when we obtain a single and 
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homogeneous cluster of opinions; polarization occurs when we have the simultane-
ous presence of several groups of opinions, well defined and separated, of adequate 
size; finally, fragmentation corresponds to a disordered state with a still high set of 
groups of small opinions.

To understand how those stable statuses can be reached as a result of a diffusive pro-
cess—and given a precise set of preconditions—are often proposed agent-based mod-
els. In these models, each agent has a variable that corresponds to his opinion. Opinion 
dynamic models can be categorized into discrete or continuous models, according to 
how opinion variables are defined. Among the former class, fall the Majority rule 
(Galam 2002), Sznajd Sznajd-Weron and Sznajd (2000), Voter Holley and Liggett (1975), 
and Q-Voter models (Castellano et  al. 2009), discrete models that define scenarios in 
which agents have to decide between two options on a given theme (e.g., true/false, yes/
no, iPhone/Samsung). On the latter class, some of the field’s milestones are the works of 
DeGroot (1974) and Friedkin (1986), where opinions are continuous, and agents update 
their beliefs based on the ones of all their neighbors simultaneously. All models called 
“bounded confidence models”, where agents are influenced only by peers having an opin-
ion sufficiently close to theirs are part of the second class. This characteristic is justi-
fied by sociological theories such as homophily, which tends to associate and bond with 
similar individuals. Two of the milestones of this kind are the models by Deffuant et al. 
(2000) and Hegselmann et al. (2002) that are usually applied in those contexts in which 
an opinion can be modeled as a real value within a given range, such as the political ori-
entation of an agent.

Nowadays, the field has attracted much attention from researchers, and recently some 
surveys were published to try to give a comprehensive outlook on state of the art, such 
as Noorazar (2020), Noorazar et al. (2020) and Sirbu et al. (2016).

Opinion Dynamic Modeling of News Perception
To model news perception’s opinion dynamics, let us consider a set of agents that share 
their opinion position w.r.t a given piece of news—that, for sake of example, I assume to 
be fake—posted on a social platform. Agents can interact only with their friends, updat-
ing their point of view on a given news to account for their distance in opinions. Thus, 
my work aims not to evaluate how the fake news spread but, instead, to understand how 
agents relate to them as a function of their social environment. To such extent, and with-
out loss of generality, I assume that the piece of news of interest is known to all agents of 
the observed population, and that each agent has already formed an initial opinion about 
it at the beginning of the simulation.

Due to the peculiar nature of the phenomena I am analyzing—e.g., how a fake news 
is perceived by individuals and how such perception reflects on their peers—I decided 
to adopt a continuous modeling framework, extending the well-known Hegselmann–
Krause model.

Definition 1 In the HK model, every agent i has an internal status xi expressing its 
opinion represented in the continuous range [− 1, 1] . The model consider only interac-
tion that occur during discrete time events, T = {0, 1, 2, . . . } . Agent pairs can interact 
if their opinions differ up to a user-specified threshold ( ǫ ), that we refer to as the users’ 
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confidence level. During each interaction event t ∈ T  a random agent i is selected and 
the set Ŵǫ(i) of its neighbors whose opinions differ at most ǫ ( di,j = |xi(t)− xj(t)| ≤ ǫ ) is 
identified. The selected agent i changes its opinion based on the following update rule:

where ai,j is 1 if there is and edge between i and j, 0 otherwise. At time t + 1 , i’s opinion 
becomes the average of its ǫ-neighbors’ opinions.

The HK model converges in polynomial time, and its behavior is closely related to the 
expressed confidence level: lowering ǫ , the model will tend to stabilize on fragmented 
opinions’ clusters while, raising it agents will tend toward reaching a consensus. Consid-
ering its definition, the HK model does not take into account the strength of the agents’ 
ties, nor the fact that agents embedded in a social context tend to relate with peers hav-
ing similar interests or social status—as shown in Fig. 2. To overcome such limitations, 
conversely from HK, in the following I assume that when an agent i discuss a news A the 
trustworthiness she attributes to her peer’s opinion depends on the strength of the rela-
tion among the two—as exemplified in Fig. 1.

In “Modeling Group Interactions” and “Modeling Pairwise Interactions” sections I for-
mally extend the HK model to exploit weighted interactions (modeling ties strengths) 
following two different agents communication patterns: (1) group interaction, and (2) 

(1)xi(t + 1) =

∑

j∈Ŵǫ(i)
ai,jxj(t)

∑

j∈Ŵǫ(i)
ai,j

Fig. 1 Weight example. Opinion xi is influenced by the opinions of agents with the opinion more similar to 
its opinion; e.g., the agents in the yellow elliptical. At the end of the interaction, xi approaches the opinions of 
the agents with heavier weights (as visually shown xi change of position)

Fig. 2 Similarity example. Each agent is assigned the vector of binary elements representing personality 
traits
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pair-wise interaction. Finally, in “Stubbornness and Homophily” section I discuss how 
stubborn agents and agents’ homophilic behaviors can be integrated in the proposed 
models.

Based on the classification of Flache et al. (2017), I implemented models that belong to 
the class “Models with similarity biased influence” where only sufficiently similar indi-
viduals (the bounded confidence ǫ ) can influence each other towards reducing opinion 
differences. Differently, the Repulsion Weighted HK model belongs to the class “Mod-
els with repulsive influence” where individuals are too dissimilar they can also influence 
each other towards increasing mutual opinion differences.

Modeling Group Interactions

In this HK variant, during a generic iteration the agent’s opinion xi changes as a weighted 
function of the opinions of her neighbors.

Definition 2 At each iteration, an agent i is randomly selected and with all her neigh-
bors. These agents are filtered, taking into account only those whose opinion have a dis-
tance less or equal than ǫ ( |xi − xj| ≤ ǫ ). This particular set of neighbors is denoted by 
Ŵǫ . Each edge (i, j) ∈ E , has an associated strength value wi,j ∈ [0, 1] . At the end of the 
interaction with all compatible neighbors, xi changes as follows:

If Ŵǫ is empty xi(t) = xi(t + 1).

WHKG ’s opinion update rule state that the new opinion of agent i, xi(t + 1) is given by 
the combined effect of i’s previous opinion, xi(t) , and the weighted average opinion of 
her compatible neighbors Ŵǫ . This model assumes that opinions evolution is the result of 
a (weighted) aggregation of all (reachable) influences expressed by agents’ peers.

Modeling Pairwise Interactions

In this HK variant, previously introduced in Toccaceli et  al. (2020), during a generic 
iteration the agent’s opinion xi changes as a function of the opinion held by one of her 
neighbors, accounting for the strength of their social connection.

Definition 3 During each iteration a random agent pair (i, j) is selected with the con-
strain that wi,j > 0 and that |x(i)− x(j)| ≤ ǫ . To account for the heterogeneity of agent 
pairs’ interaction strengths, WHKB leverages edge weights, thus capturing the effect of 
different social bonds’ strength. As in WHKG , each edge (i, j) ∈ E , has a value wi,j ∈ [0, 1] . 
At the end of the interaction xi changes as follows:

(2)xi(t + 1) =







xi(t)+

�

j∈Ŵǫ
xj(t)wij

#Ŵǫ
(1− xi(t)) if xi(t) ≥ 0

xi(t)+

�

j∈Ŵǫ
xj(t)wij

#Ŵǫ
(1+ xi(t)) if xi(t) < 0

(3)xi(t + 1) =

{

xi(t)+
xi(t)+xj(t)wi,j

2
(1− xi(t)) if xi(t) ≥ 0

xi(t)+
xi(t)+xj(t)wi,j

2
(1+ xi(t)) if xi(t) < 0
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In WHKB the opinion of agent i at time t + 1 is given by the compound effect of his previ-
ous belief, xi(t) and the weighted average opinion of a neighbor j selected from the set Ŵǫ , 
where wi,j accounts for i’s perceived influence/trust of j.

Indeed, WHKB can be easily extended to account for more complex interaction patters. In 
particular, while considering the opinion formation process involving controversial news, 
an interesting effect to account for involves the attraction-repulsion of agents beliefs.

Definition 4 With the term “attraction” I identify the effect of those interactions in 
which an agent opinion move toward the one of her peer. At the end of an “attraction” 
event, agent i begins to doubt her position and share some of j’s one. For this reason i’s 
opinion approaches the one of his interlocutor: their distance at t + 1 becomes lower 
than at time t, di,j(t + 1) ≤ di,j(t).

At the end of the interaction xi changes as follows:

where sumop = xi(t)+ xj(t)wi,j.

The criterion used to evaluate opinions’ evolution is the same of WHKB : the difference lies 
in the identification of different cases according to whether the opinions of i and j are dis-
cordant/concordant. Following such a strategy, AWHK ensures that agents pairs opinions’ 
difference is reduced after interaction.

However, while observing real phenomena, we are used to observe interactions where 
people influence each other notwithstanding their initial opinions: interactions that results 
in approaching like-minded individuals while moving away from those having opposite 
opinions.

Definition 5 With the term “repulsion” I identify the effect of those interactions 
resulting in agents’ opinions that move apart. For example, “repulsive” interactions are 
the ones involving agents starting from opposite beliefs that conclude with opinion rad-
icalization. In this scenario, at the end of the interaction, i’s opinion will have moved 
away from j’s; the agent i will be more convinced of his thoughts. At the end of the inter-
action xi changes as follows:

(4)xi(t + 1) =















































xi(t)−
sumop

2
(1− xi(t)) if xi(t) ≥ 0, xj(t) ≥ 0, xi(t) > xj(t)

xi(t)+
sumop

2
(1− xi(t)) if xi(t) ≥ 0, xj(t) ≥ 0, xi(t) < xj(t)

xi(t)+
sumop

2
(1+ xi(t)) if xi(t) < 0, xj(t) < 0, xi(t) > xj(t)

xi(t)−
sumop

2
(1+ xi(t)) if xi(t) < 0, xj(t) < 0, xi(t) < xj(t)

xi(t)−
sumop

2
(1− xi(t)) if xi(t) ≥ 0, xj(t) < 0, sumop > 0

xi(t)+
sum,op

2
(1− xi(t)) if xi(t) ≥ 0, xj(t) < 0, sumop < 0

xi(t)+
sumop

2
(1+ xi(t)) if xi(t) < 0, xj(t) ≥ 0, sumop > 0

xi(t)−
sumop

2
(1+ xi(t)) if xi(t) < 0, xj(t) ≥ 0, sumop < 0
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with sumop = xi(t)+ xj(t)wi,j.

As for AWHK, the opinion evolution rule is defined by multiple cases, each of which 
describes a particular configuration produced by the sign of agents’ opinions. The 
update rule will ensure that di,j(t) ≤ di,j(t + 1).

Indeed, AWHK and RWHK can be combined to obtain a holistic model integrating 
both attraction and repulsion behaviors.

Definition 6 During each iteration, the model selects an agent i randomly with one 
of its neighbors, j-regardless of the ǫ threshold. Once identified the agents’ pair, the 
model computes the absolute value of the difference between the opinions of i and j, 
θi,j = |xi(t)− xj(t)| . If θi,j ≤ ǫ , AWHK is applied to compute xi(t + 1) , otherwise RWHK.

ARWHK describes several complex opinion dynamics scenarios; e.g., the changes 
of mind that an agent experiences while discussing news, either fake or not, shared by 
a trusted/untrusted peer.

Stubbornness and Homophily

Indeed, opinion exchange/dynamics is affected by several environmental and contex-
tual peculiarities. Among them, the presence of stubborn agents and the increased 
likelihood of interactions among similar agents are the ones that can often be 
observed in online social platforms (Yildiz et al. 2013; Sheykhali et al. 2019; McPher-
son et al. 2001).

Stubborn Agents

The models described so far do not account for the presence of stubborn agents, e.g., 
agents having strong opinions which, despite peers’ discussions, they are not willing to 
reconsider. Stubborn agents can be seen as those agents who deliberately spread/support 
misinformation, as well as the radical supporters of a given idea. This type of agents can 
coincide with notable individuals in society, such as companies, media, or politicians.

I integrate stubborn agents in my models by introducing an agent-wise binary flag to 
denote her willingness (or not) to change opinion upon peers’ interactions. The opinion 
update rules expressed by the proposed models change accordingly following a conserv-
ative strategy: if the randomly selected agent i is a stubborn one, she will not update her 
opinion and, therefore, xi(t) = xi(t + 1) ; otherwise, the standard opinion evolution rule 
for the considered model is applied.

(5)xi(t + 1) =















































xi(t)+
sumop

2
(1− xi(t)) if xi(t) ≥ 0, xj(t) ≥ 0, xi(t) > xj(t)

xi(t)−
sumop

2
(1− xi(t)) if xi(t) ≥ 0, xj(t) ≥ 0, xi(t) < xj(t)

xi(t)−
sumop

2
(1+ xi(t)) if xi(t) < 0, xj(t) < 0, xi(t) > xj(t)

xi(t)+
sumop

2
(1+ xi(t)) if xi(t) < 0, xj(t) < 0, xi(t) < xj(t)

xi(t)+
sumop

2
(1− xi(t)) if xi(t) ≥ 0, xj(t) < 0, sumop > 0

xi(t)−
sumop

2
(1− xi(t)) if xi(t) ≥ 0, xj(t) < 0, sumop < 0

xi(t)−
sumop

2
(1+ xi(t)) if xi(t) < 0, xj(t) ≥ 0, sumop > 0

xi(t)+
sumop

2
(1+ xi(t)) if xi(t) < 0, xj(t) ≥ 0, sumop < 0
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Similarity

In our everyday life, we are used to mainly relate with people who share our same inter-
ests or social status. An aspect that influences social relationships is individuals’ char-
acter: it is typical for individuals to show greater trust and harmony with others sharing 
similar character traits. To integrate this idea into the proposed models I enrich each 
agent description with a vector encoding her “profile”. For the sake of my experiment, 
each agent vector is composed by five binary elements, that represent the “big five” per-
sonality traits (McCrae and Costa 2003)—openness, conscientiousness, extroversion, 
agreeableness and neuroticism . To each element of the list is assigned a value in the set 
{0, 1}. When considering an agent i a value of 1 in the kth position of her profile vector 
implies that she posses the associated personality trait (as we can see in Fig. 2). Once 
built agents’ profile vectors, I measure the similarity among them so to weight the previ-
ously defined opinion update rules. In detail, once selected the agent i and a compatible 
neighbors j, I calculate through the Jaccard coefficient ( J (A,B) = |A∩B|

|A∪B| ) their profiles’ 
similarity. The Jaccard index by definition assumes a value between 0 and 1: in my sce-
nario is maximized iff the profile vectors of the two agents are the same, minimized if 
they do not overlap. Once defined and computed the similarity scores, the opinion xj 
of each neighbor j of i is weighted by the similarity simij between i and j. In practice, 
the component xi(t)+ xj(t)wij of the previous equations (called sumop in AWHK and 
RWHK) becomes xi(t)+ xj(t)wijsimij . With such a change the more the agents i and j 
are similar the more the opinion of j will weight on i’s updated one.

Experiments
This section describes my experimental analysis, focusing on three aspects: the selected 
network datasets, the implemented experimental protocol, and the obtained results. To 
foster experiments reproducibility, I integrated the introduced models into the NDlib1 
python library (Rossetti et al. 2018, 2017).

Datasets

I simulate the proposed models on a scale-free network (Barabasi–Albert model) (Bara-
bási and Albert 1999). Since I am not interested in analyzing the proposed models’ scal-
ability, I generate networks composed of 500 nodes for all scenarios.

Moreover, to simulate a more realistic network topology (e.g., integrating meso-scale 
topologies), I also tested my models against a 500 nodes network generated with the LFR 
benchmark (Lancichinetti et al. 2008). This latter network was generated imposing the 
following parameter values: (1) power law exponent for the community size distribution, 
β = 1.5 ; (2) power law exponent for the degree distribution, γ = 3 ; (3) average degree of 
nodes, < k >= 12 ; (4) fraction of intra-community edges incident to each node, µ = 0.1 ; 
(5) minimum community size mins = 80 . In my LFR instance composes of five non-
overlapping communities.

1 NDlib: Network Diffusion library. https:// ndlib. readt hedocs. io/.

https://ndlib.readthedocs.io/
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Experimental Protocol

All opinion dynamic models are analyzed while varying the bounded confi-
dence, ǫ ( ǫ ∈ {0.05, 0.25, 0.45, 0.65, 0.85} ) and the percentage of stubborn agents 
( κ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9}) . Simulation results are discussed using opinion evolution 
plots, namely, representing individual agents’ opinions through time. For the sake of 
results interpretation, I assume that given an agent i and its opinion at time t, xi(t):

• if xi(t) > 0 then i, at time t, accepts the (fake) news and supports it while involved 
in discussions with her peers;

• if xi(t) < 0 then i, at time t, rejects the (fake) news and try to debunk it during the 
discussion she is involved into;

• if xi(t) = 0 then i, at time t, is not interested in the (fake) news or she considers it 
debunked and is unwilling to advocate for either side of the dispute.

Results

First, I report the results obtained with the WHKG model; after that, I focus on the 
results obtained considering pair-wise interactions on the base synthetic scenario; 
finally, I discuss the impact of community structure on the observed dynamics. 
Edges’ weights, representing ties’ strengths, are randomly sampled from a normal 
distribution.

Group Interactions

Figure 3 shows the results obtained by WHKG model on scale-free network for different 
ǫ values. Different line colors represent the agent’s initial opinion (positive, negative, or 
neutral). My simulation results in a system reaching a polarization equilibrium: a status 
in which agents are well separated into two large clusters of opposing opinions. There-
fore, the final equilibrium has a cluster composed of agents accepting and supporting the 
fake news; the second cluster has agents that reject them. The final status is independent 
by the ǫ value: in my simulation, such a parameter only affects the convergence speed, 
making it quicker as it grows. It is worth noticing that for small values of ǫ only a small 
portion of agents are involved in opinion exchange (as shown in Fig. 3a): such expected 

(a) ε = 0.25 (b) ε = 0.45 (c) ε = 0.85

Fig. 3 Opinion evolution varying ǫ for WHKG . The system reaches a polarization equilibrium and the final 
status is independent by the ǫ value. Such a parameter only affects the convergence speed, making it quicker 
as it grows
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result makes the polarization extreme, actually describing an opinion fragmentation 
scenario.

For this model, I omit the results obtained imposing the stubborn agents and the simi-
larity between agents since the obtained opinion evolution trends do not show sensible 
differences from the ones in Fig. 3.

Pair‑Wise Interactions

Figure 4 shows the opinion evolution for all the models that consider the pair-wise 
interactions with the value of ǫ fixed to 0.85. Differently from the previous model, 
with the WHKB and the RWHK model, the system does not reach an equilibrium 
(Fig. 4a, c). In the former scenario, after 20 iterations, the opinion begins to fluctuate 

(a)WHKB (b) AWHK (c) RWHK

Fig. 4 Opinion evolution for the models with pair-wise interactions with ǫ equal 0.85. The system does not 
reach an equilibrium with the WHKB and the RWHK model

(a) ε = 0.25 (b) ε = 0.45 (c) ε = 0.85

Fig. 5 Opinion evolution varying ǫ for ARWHK. Low values of ǫ will favor the application of RWHK model—
thus leading to higher fragmentation—while high values will favor the application of AWHK model—thus 
leading to convergence

(a) stubborn=0.3 (b) stubborn=0.5 (c) stubborn=0.7

Fig. 6 Effect of the stubborn agents varying their percentage in the AWHK model with ǫ equal 0.85. The 
stubborn agents opinion is fixed to extreme positive opinion. Stubborn population opinion evolution lines 
are omitted. The stubborn presence leads to a more chaotic regime towards the stubborn agents’ opinion
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in the space of negative opinions without ever reaching a convergence; for the RWHK 
model, there is a fluctuation around 0. Instead, for the other two methods (AWHK 
and ARWHK), the system reaches an equilibrium; for the method that considers the 
attraction (Fig. 4b), the system leading to a consensus to middle opinion (the agents 
are not interested in the fake news), for the ARWHK model (Fig. 5c) the system con-
verges to two different well separated states, the positive and negative opinion.

Figure  5 shows the opinion evolution for the ARWHK model for different value 
ǫ values. A thorough analysis of simulation results highlights that ǫ acts as a razor 
that implicitly divides the probability of observing attractive or repulsive pair-wise 
interactions: low values of ǫ will favor the application of RWHK—thus leading to 
higher fragmentation—while high values will results in a more likely application of 
AWHK—thus leading to convergence.

Attraction and Stubbornness Figure 6 presents the AWHK model results for various 
values of the percentage of stubborn agents while keeping constant the value of ǫ to 
0.85. In this Figure, the stubborn agents’ opinion is fixed to extreme positive opinion, 
thus supporting fake news’ acceptance.

As underlined by the selected scenarios simulations’ outcomes, increasing the per-
centage of stubborn agents leads to a more chaotic regime, formed by a subset of 
agents whose opinions fluctuate heavily towards the stubborn agents’ opinion. The 
presence of stubborn agents influences the evolution of opinions as they act as a 
pivot for those who are open to change their minds. I performed the same simu-
lations varying the initial set of initial stubborns agents’ opinions. As expected, I 
observe a similar result when stubborn agents have negative opinions and even a 
more chaotic regime when that class of agents is equally distributed across the opin-
ion spectrum. The opinions approach the positive or negative values based on how 
the stubborn ones are distributed in the population: if the stubborn are negative, 
the opinions that change fluctuate towards negative values; the opposite situation 
occurs for stubborn ones with positive opinions. So stubborn agents act as persuad-
ers, bringing the opinion of the population closer to theirs. The higher the num-
ber of stubborn agents, the more evident their effect on the remaining population 
appears.

(a) stubborn=0.3 (b) stubborn=0.5 (c) stubborn=0.7

Fig. 7 Effect of the stubborn agents varying their percentage in the RWHK model with ǫ equal 0.85. The 
stubborn agents opinion is fixed to extreme positive opinion. Stubborn population opinion evolution lines 
are omitted. The stubborn presence leads to a more chaotic regime towards the opposite stubborn agents’ 
opinion
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Repulsion and  Stubborness Figure  7 presents the results obtained with the RWHK 
model for various values of the percentage of stubborn agents while keeping constant 
the value of ǫ to 0.85. In this case, the stubborn agents’ opinion is fixed to extreme posi-
tive opinion. Unlike the AWHK model, the stubborn presence leads to a more chaotic 
regime towards the stubborn agents’ opinion, for the RWHK model, the opposite behav-
ior occurs. If the stubborn are positive, the opinions fluctuate towards negative values; 
the opposite situation occurs for stubborn ones with negative opinions. This is due to the 
update rule that ensures that di,j(t) ≤ di,j(t + 1).

Attraction/Repulsion, Stubborness and  Similarity I performed the same simulations 
while introducing agents’ profile similarity. Such extension mainly impact the time 
required to reach a stable state: enforcing homophilic interactions slow down conver-
gence time, while not significantly affecting scenarios in which polarization/fragmenta-
tion arise.

Community Structure

To understand the effect that the presence of dense meso-scale topologies have the opin-
ion process unfolding, in Fig. 9 I show a visual example. There, the color spectrum cover 
negative (blue) to positive (red) node opinions: the darker the color, the more extreme 
the node opinion. As previously done, I study the opinion spreading process while vary-
ing the distribution of initial opinions in the communities and the number of stubborn 
agents.

I designed two different scenario configurations varying the stubborn agents and the 
communities’ distribution of opinions. In particular:

• configuration A: the opinions of agents belonging to the various communities are 
randomly distributed with values in the range [−1, 1].

• configuration B: in this case, I set different opinions for each community. For exam-
ple, I can set negative opinions for some communities and positive for others.

For all configurations, I selected the stubborn agents in two different ways: (1) at random 
(2) by identifying those nodes that are less embedded within their communities (e.g., the 
ones have the higher ratio of external community degree w.r.t. their total one).

(a) ε = 0.25 (b) ε = 0.45 (c) ε = 0.85

Fig. 8 Opinion evolution on LFR network with WHKG varying ǫ with configuration A. There is not a 
polarization into two distinct groups, so the community structure inhibits the polarization; there is not a 
polarization into two distinct groups
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Group Interactions Initially, I consider configuration A without stubborn agents. Fig-
ure 8 shows the opinion evolution of the WHKG model varying the ǫ parameter. As we 
can see, with a low value of ǫ I obtain different results respect the Fig. 3, obtained with 
the scale-free network. In this case, I do not obtain a polarization into two distinct 
groups, many nodes take an intermediate opinion. Therefore, the community structure 
inhibits the polarization.

Considering configuration B, the network topologies considered in this analysis are 
exemplified in the toy example of Fig. 9. In this configuration, the network nodes are 
clustered in five loosely interconnected blocks—three formed of agents with opinions 
in the negative spectrum, the others two characterized by agents with positive opin-
ions. Figure 9a shows the initial condition assigned to both simulations. I set the same 
value of ǫ = 0.45 for both simulations; I also fix the percentage of stubborn agents to 
30 %. For both cases, the stubborn agents’ opinion is fixed to extreme positive opin-
ion. Figure 9b presents the final configuration when the stubborn agents are chosen at 
random; in Fig. 9c the stubborn agents are chosen between the nodes with the greater 
ratio among their inter-community degree and their total degree. While executing a 
simulation that involves “bridge” stubborns, we can view how the resulting final equi-
librium converges to a common spectrum with the major number of positive nodes 
(as we can see in Fig.  9c). In particular, we can observe how stubborn people can 
make their opinion prevail, even outside the community. Conversely, when the stub-
born agents are chosen at random, I get a different result, as shown in Fig. 9b. The 
final equilibrium is characterized by a major number of nodes with negative opinions.

Stubborn agents have an important role in the opinion dynamics when the network 
structure is clustered into communities: my experiments underlined that, for the 
WHKG model, stubborn agents’ presence foster the convergence toward the stubborn 
agents’ opinion. 

Pair‑Wise Interactions I observed that stubborn agents’ presence plays a relevant 
role, especially with high ǫ confidence values and when they reach a high critical mass. 

Fig. 9 Network visualizations with configuration B. a Nodes initial conditions - five communities, three 
prevalently negative (blue node), two positive (red nodes); b WHKG final equilibrium with random stubborn; c 
WHKG final equilibrium with stubborn as bridges
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Such a behavior can be explained by the analyzed network’s modular structure, which 
acts as a boundary for the diffusion between clusters.

Considering configuration A, stubborn agents’ effect on the opinion dynamic model is 
evident for the AWHK model, mostly if we set them at extremes of the opinion range. For 
configuration A, I choose random stubborn agents, and I fix their opinion to positive. The 
effect of stubbornness leads to observing a fluctuating trend towards the positive extreme 
(Fig. 10). Conversely, for configuration B, when the percentage of stubborn is less than 0.5, 
the system converges to two states (middle and positive); when the percentage is greater 
than 0.5, the opinion of the population polarizes on the opinion of the stubborns agents 
Fig. 11.

Conclusion
In this paper, I modeled individuals’ responses to fake news as a dynamic opinion process. 
By modeling some of the different patterns governing the exchange of views regarding a 
given news item—namely, attraction/repulsion, trust, similarity, and the existence of stub-
born agents—I was able to drive some interesting observations on this complex, often not 
adequately considered, context. My simulations showed that (1) the differences in the topo-
logical interaction layer are reflected in the convergence times of the proposed models; (2) 
the presence of stubborns significantly affects the final system equilibrium of the system, 
especially when high confidence limits regulate pair-wise interactions; (3) the mechanisms 
of attraction favor convergence toward a common opinion while those of repulsion facili-
tate polarization. (4) Adding similarity between agents acts as an attenuation factor.

As a future work, I plan to extend the experimental analysis to real data to understand the 
extent to which the proposed models can replicate observed ground truths.
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