
Exorcising the Demon:
Angel, Efficient Node-centric Community

Discovery

Giulio Rossetti

KDD Lab, ISTI-CNR, Pisa, Italy
giulio.rossetti@isti.cnr.it

Abstract. Community discovery is one of the most challenging tasks in
social network analysis. During the last decades, several algorithms have
been proposed with the aim of identifying communities in complex net-
works, each one searching for mesoscale topologies having different and
peculiar characteristics. Among such vast literature, an interesting family
of Community Discovery algorithms, designed for the analysis of social
network data, is represented by overlapping, node-centric approaches. In
this work, following such line of research, we propose Angel, an algo-
rithm that aims to lower the computational complexity of previous so-
lutions while ensuring the identification of high-quality overlapping par-
titions. We compare Angel, both on synthetic and real-world datasets,
against state of the art community discovery algorithms designed for the
same community definition. Our experiments underline the effectiveness
and efficiency of the proposed methodology, confirmed by its ability to
constantly outperform the identified competitors.

Keywords: Complex Network Analysis, Community Discovery

1 Introduction

Community discovery (henceforth CD), the task of decomposing a complex net-
work topology into meaningful node clusters, is allegedly oldest and most dis-
cussed problem in complex network analysis [3, 6]. One of the main reasons
behind the attention such task has received during the last decades lies in its
intrinsic complexity, strongly tied to its overall ill-posedness. Indeed, one the few
universally accepted axioms characterizing this research field regards the impos-
sibility of providing a single shared definition of what community should look
like. Usually, every CD approach is designed to provide a different point of view
on how to partition a graph: in this scenario, the solutions proposed by different
authors were often proven to perform well when specific assumptions can be
made on the analyzed topology. Nonetheless, decomposing a complex structure
in a set of meaningful components represents per se a step required by several
analytical tasks – a need that has transformed what usually is considered a prob-
lem definition weakness, the existence of multiple partition criteria, into one of

2 Giulio Rossetti

its major strength. Such peculiarity has lead to the definition of several “meta“
community definitions, often tied to specific analytical needs. Classic works in-
tuitively describe communities as sets of nodes closer among them than with
the rest of the network, while others, only define such topologies as dense net-
work subgraphs. A general, high-level, formulation of the Community Discovery
problem definition is following:

Definition 1 (Community Discovery (CD)). Given a network G, a commu-
nity C is a set of distinct nodes: C = {v1, v2, . . . , vn}. The community discovery
problem aims to identify the set C of all the communities in G.

In this work, we introduce a CD algorithm, Angel, tailored to extract over-
lapping communities from a complex network. Our approach is primarily de-
signed for social networks analysis and belongs to a well-known sub family of
Community Discovery approaches often identified by the keywords bottom-up
and node-centric [18]. Angel aims to provide a fast way to compute reliable
overlapping network partitions. The proposed approach focuses on lowering the
computational complexity of existing methods proposing scalable sequential –
although, easily parallelizable – solutions to a very demanding task: overlapping
network decomposition.

The paper is organized as follows. In Section 2 we introduce Angel. There
we discuss its rationale, the properties it holds as well as its computational
complexity. In Section 3 we evaluate the proposed method on both synthetic and
real-world datasets for which ground truth communities are known in advance.
To better discuss the resemblance of Angel partitions to ground truth ones
as well as its execution times, we compare the proposed method with state-of-
art competitors sharing the same rationale. Finally, in Section 4 the literature
relevant to our work is discussed and Section 5 concludes the paper.

2 Angel

In this section, we present our bottom-up solution to the community discovery
problem: Angel1. Our approach, as we will discuss, follows a well-known pat-
tern composed by two phases: i) construction of local communities moving from
ego-network structures and, ii) definition of mesoscale topologies by aggregating
the identified local-scale ones. Since Angel main goal is reducing the computa-
tional complexity of previous node-centric approaches, we will detail the merging
strategy it implements to build up the final community partition and, finally, we
will discuss its properties and study its complexity.

Algorithm Rationale. The algorithmic schema of Angel is borrowed from
the Demon [4] one, an approach whose main goal was to identify local commu-
nities capturing individual nodes perspectives on their neighborhoods and to use
them to build mesoscale ones.

1 Code available at: https://github.com/GiulioRossetti/ANGEL

Exorcising the Demon 3

ALGORITHM 1: Angel
Input: G : (V,E), the graph; φ, the merging threshold.
Output: C a set of overlapping communities.

1 for v ∈ V do // Step #1
2 e← EgoMinusEgo(v, G) ; // Step #2
3 C(v)← LabelPropagation(e) ; // Step #3
4 C ← C ∪ C(v)
5 ncoms = |C|
6 acoms = 0
7 while ncoms != acoms do // Step #4
8 acoms = ncoms
9 C ← DecreasingSizeSorting(C) ; // Step #5

10 for c ∈ C do
11 C ← PrecisionMerge(c, C, φ) ; // Step #6
12 ncoms = |C|
13 return C

Angel takes as input a graph G, a merging threshold φ and an empty set
of communities C. The main loop of the algorithm cycles over each node, so
to generate all the possible points of view of the network structure (Step #1
in Algorithm 1). To do so, for each node v, it applies the EgoMinusEgo(v,G)
(Step #2 in Algorithm 1) operation as defined in [4]. Such function extracts the
ego-network centered in the node v – e.g., the graph induced on G and built
upon v and its first order neighbors – then removes v from it, obtaining a novel,
filtered, graph substructure. Angel removes v since, by definition, it is directly
linked to all nodes in its ego-network, connections that would lead to noise in
the identification of local communities. Obviously, a single node connecting the
entire sub-graph will make all nodes very close, even if they are not in the same
local community. Once obtained the ego-minus-ego graph, Angel computes the
local communities it contains (Step #3 in Algorithm 1). The algorithm performs
this step by using a community discovery algorithm borrowed from the literature:
Label Propagation (LP)[13]. This choice, as in [4], is justified by the fact that:
(i) LP has low algorithmic complexity (∼ O(N), with N number of nodes), and,
(ii) it returns results of a quality comparable to more complex algorithms[3].

Reason (i) is particularly important since Step #3 of Angel needs to be
performed once for every node of the network, thus making unacceptable to
spend a super-linear time for each node. Notice that instead of LP any other
community discovery algorithm (both overlapping or not) can be used (impacting
both on the algorithmic complexity and partition quality). Given the linear
complexity (in the number of nodes of the extracted ego-minus-ego graph) of
Step #3, we refer to this as the inner loop for finding the local communities.

Due to the importance of LP for our approach and to shed lights on how it
works we briefly describe its classical formulation [13]. Suppose that a node v
has neighbors v1, v2, ..., vk and that each one of them carries a label denoting
the community that it belongs to: then, at each iteration the label of v is up-
dated to the majority label of its neighbors. As the labels propagate, densely
connected groups of nodes quickly reach a consensus on a unique label. At the
end of the propagation process, nodes with the same labels are grouped as one

4 Giulio Rossetti

ALGORITHM 2: PrecisionMerge
Input: x, a community; C, a set of overlapping communities; φ, the merging threshold.
Output: C, a set of overlapping communities.

1 com to freq ← community frequency(x) ; // Step #A
2 for com, freq ∈ com to freq do

3 if freq
|x| ≥ φ then // Step #B

4 C = C − {x, com}
5 C = C ∪ {x ∪ com}
6 return C

community. In case of bow-tie situations – e.g., a node having an equal maxi-
mum number of neighbors in two or more communities – the classic definition
of the LP algorithm randomly selects a single label for the contended node.
Angel, conversely, handle this situation allowing soft community memberships,
thus producing deterministic local partitions.

The result of Steps #1-3 of Algorithm 1 is a set of local communities C(v),
according to the perspective of a specific node, v, of the network. Conversely,
from what done in Demon, Angel does not reintroduce the ego in each local
community to reduce the noisy effects hubs play during the merging step. Local
communities are likely to be an incomplete view of the real community structure
of G. Thus, the result of Angel needs further processing: namely, to merge each
local community with the ones already present in C.

Once the outer loop on the network nodes is completed, Angel leverage the
PrecisionMerge function to compact the community set C so to avoid the
presence of fully contained communities in it. Such function (Step #6, detailed
in Algorithm 2) implements a deterministic merging strategy and is applied
iteratively until reaching convergence (Step #4) – e.g., until the communities in
C cannot be merged further. To assure that all the possible community merges
are performed at each iteration C is ordered from the smallest community to the
biggest (Algorithm 1, #Step 6).

This merging step is a crucial since it needs to be repeated for each of the
local communities. In Demon such operation requires the computation for each
pair of communities (x, y), x ∈ C(v) and y ∈ C, of an overlap measure (i.e.
Jaccard index) and to evaluate if its value overcome a user defined threshold. This
approach, although valid, has a major drawback: given a community x ∈ C(v) it
requires O(|C|) evaluations to identify its best match among its peers. Indeed,
such kind of strategy represents a costly bottleneck requiring an overall O(|C|2)
complexity while applied to all the identified local communities.

Angel aims to drastically reduce such computational complexity by per-
forming the matches leveraging a greedy strategy.

To do so, it proceeds in the following way:

i) Angel assumes that each node carries, as additional information, the iden-
tifiers of all the communities in C it already belongs to;

ii) in Step #A (Algorithm 2) for each local community x is computed the
frequency of the community identifiers associated with its nodes;

Exorcising the Demon 5

iii) in Step #B, for each pair (community id, frequency) is computed its Pre-
cision w.r.t. x, namely the percentage of nodes in x that also belong to
community id;

iv) iff the precision ratio is greater (or equal) than a given threshold φ the local
community x is merged with community id: their union is added to C and
the original communities are removed from the same set.

Operating in this way it is avoided the time expensive computation of commu-
nity intersections required by Jaccard-like measures since all the containment
testing can be done in place.

Angel Properties. The proposed approach posses two nice properties: it pro-
duces a deterministic output (once fixed the network G and threshold φ), and it
allows for a parallel implementation.

Property 1 (Determinism) There exists a unique C=Angel(G,φ) for any
given G and φ, disregarding the order of visit of the nodes in G.

To prove the determinism of Angel it is mandatory to break its execution in
two well-defined steps: (i) local community extraction and (ii) merging of local
communities.

i) Local communities: Label Propagation identifies communities by applying a
greedy strategy. In its classical formulation [13] it does not assure conver-
gence to a stable partition due to the so-called “label ping-pong problem”
(i.e., instability scenario primarily due to bow-tie configurations. However,
as already discussed, Angel addresses such problem by relaxing the node
single label constraint thus allowing for the identification of a stable config-
uration of overlapping local communities.

ii) Merging: this step operates on a well-determined set of local communities on
which the PrecisionMerge procedure is applied iteratively. Since we ex-
plicitly impose the community visit ordering the determinism of the solution
is given by construction.

Property 2 (Compositionality) Angel is easily parallelizable since the local
community extraction can be applied locally on well defined subgraphs (i.e., ego-
minus-ego networks).

Given a graph G = (V,E) it is possible to instantiate Angel local community
extraction simultaneously on all the nodes u ∈ V and then apply the Preci-
sionMerge recursively in order to reduce and compact the final overlapping
partition:

Angel(G,φ) = PMerge(
⋃
u∈V LP (EME(u))) (1)

The underlying idea is to operate community merging only when all the local
communities are already identified (i.e., LabelPropagation is applied to all
the ego-minus-ego of the nodes u ∈ V – LP(EME(u)) in Equation 1 – as shown
in Figure 1). Moreover, this parallelization schema is assured to produce the

6 Giulio Rossetti

Fig. 1: Angel parallelization schema. The graph G is decomposed in |V |
ego-minus-ego network by a dispatcher D and distributed to n workers
{LP0, . . . , LPn} that extract local communities from them. At the end of such
parallel process, a collector C iteratively apply PrecisionMerge till obtaining
the final overlapping partition.

same network partition obtained by the original sequential approach due to the
determinism property.

Angel Complexity. To evaluate the time complexity we proceed by decompos-
ing Angel in its main components. Given the pseudocode description provided
in Algorithm 1 we can divide our approach into the following sub-procedures:

i) Outer loop (lines 3-6): the algorithm cycles over the network nodes to extract
the ego-minus-ego networks and identify local communities. This main loop
has thus complexity O(|V |).

ii) Local Communities extraction: the Label Propagation algorithm has com-
plexity O(n+m) [13], where n is the number of nodes and m is the number
of edges of the ego-minus-ego network. Let us assume that we are working
with a scale free network, whose degree distribution is pk = k−α: in this
scenario the majority of the identified ego-minus-ego networks are composed
by n << |V | nodes and m << |E| edges, thus the average complexity of
each iteration will be O(n+m) << O(|V |+ |E|).

iii) PrecisionMerge final cycle (lines 9-14): for each local community An-
gel evaluate if it can be merged with one or more previously identified
substructures. In order efficiently implement this task we assume that once
identified a community a new identifier is generated and assigned to all the
nodes within it. All the nodes will then have attached multiple labels (one
representing an identifier of a community the node belongs to). Given a
community x the PrecisionMerge function (Algorithm 2) leverage such
information to compute – for each community identifier y attached to the
nodes in x – the ratio of nodes in it that already belongs to y w.r.t. the size
of x. If the ratio is greater than (or equal to) a given threshold, the merge is
applied and the node label updated. This step can be performed with con-
stant complexity, O(1), employing an hash-map. Considering the complete
loop the overall cost is thus given by the initial sorting of the communities

Exorcising the Demon 7

by decreasing size, O(|C|log|C|) (where C is the community set), and the
evaluation of PrecisionMerge on each community in C, O(|C|). Moreover,
we can assume the number of iteration k << |C| since at each step the num-
ber of communities decreases: thus we can consider k as a constant factor
giving as final complexity, O(|C|log|C|) + O(|C|) = O(|C|log|C|).

Such sub procedures gives us a final complexity of O(|V |(n+m))+O(|C|log|C|):
considering a scale free network, for which we can reasonably expect |V | >>
(n+m) and |V | > |C|, the final complexity can be approximated as O(|V |).

3 Evaluation

Evaluating a community discovery approach is not an easy task due to the overall
ill-posedness of the problem. In this section we propose a two-stage evaluation,
focusing both on underlining Angel efficiency – in terms of scalability and run-
ning time – as well as on its ability to retrieve ground truth communities. As a
first step, we identify the competitors of our algorithm, approaches that share
with it the same rationale. After that, we briefly describe the quality function
we adopt to compare the partition produced by the selected algorithms and to
assess their resemblance w.r.t. ground truth communities. Finally, we evaluate
Angel and its competitors on two different community resemblance tasks: (i)
identification of planted ground truth partition in synthetically generated net-
works, and (ii) identification of annotated communities in real-world datasets.

Competitors. To evaluate Angel performances, we compare it with state-
of-art competitors having a similar rationale23.
(i) Demon [4] is an incremental and limited time complexity algorithm for com-
munity discovery. It extracts ego networks, i.e., the set of nodes connected to
an ego node u, and identifies the real communities by adopting a democratic,
bottom-up merging approach of such structures.
(ii) PanDemon [1] is a parallel implementation of Demon designed to increase
its scalability and to reduce the computational its complexity.
(iii) NodePerception. In [19] the authors propose a generalization of the De-
mon approach: NodePerception instantiate the local two-phase schema lever-
aging different a CD approaches in the local community extraction phase, allow-
ing for the identification of partitions that optimize specific quality functions.
(iv) SLPA. In [21] is introduced SLPA, an overlapping hierarchical community
discovery algorithm designed for large-scale networks. SLPA leverages a label
propagation strategy built upon dynamic interaction rules.

The former three approaches move from the same algorithmic schema of An-
gel. They all are node-centric algorithms [18] that, moving from the analysis of

2 All the algorithms were executed on a Linux 4.4.0 machine with an Intel Core i7-5820
CPU @3.3GHzx16 and 32GB of RAM.

3 All algorithms have been integrated within the CDlib python library [15]
https://github.com/GiulioRossetti/cdlib

8 Giulio Rossetti

|V | |E| |C| CC d

emailEu 1,005 25,571 42 0.3994 7

Amazon 334,863 925,872 75,149 0.3967 44

dblp 317,080 1,049,866 13,477 0.6324 21

Youtube 1,134,890 2,987,624 8,385 0.0808 20

Table 1: Datasets Statistics. Number of nodes, edges, ground truth commu-
nities, average clustering coefficient and diameter for the analyzed datasets.

ego-networks, generate overlapping partitions while following a non-deterministic
approach. Conversely, the latter competitor, SLPA, represents a fast implemen-
tation of the label propagation algorithm used by Angel to identify ego-network
local communities.

Synthetic benchmarks. To evaluate how Angel behave under specific, con-
trolled, settings we tested it, along with its competitors, against synthetic net-
works having planted ground truth communities generated through the LFR
benchmark4 [9]. The networks described by LFR have well-known characteris-
tics: among the others, both their node degrees and community sizes follow a
power law distributions. Moreover, similar to the planted l-partition model[2],
LFR network vertices share a predefined fraction of their links with other ver-
tices of their cluster. We generated multiple networks varying the following LFR
parameters: (i) N , the network size (from 100 to 100k nodes);(ii) C, the network
density (from 0.1 to 0.4, steps of 0.1); (iii) µ, the mixing coefficient describing
the average per-node ratio between the number of edges to its communities and
the number of edges with the rest of the network (from 0.1 to 0.5, steps of 0.1).

Real world data. To understand how the Angel and its competitors behave
on real-world data, we tested them against four network datasets having anno-
tated ground truth community structure5. We analyzed the following datasets
(whose synthetic statistics are reported in Table 1):
(i) emailEU. Email exchange network among members of a large European re-
search institution. The ground truth communities are members’ departments.
(ii) Amazon. Network built using the Customers Who Bought This Item Also
Bought Amazon feature. Product categories define ground-truth communities.
(iii) dblp. Co-authorship network where two authors are connected if they publish
at least one paper together. Publication venue define ground-truth communities.
(iv) Youtube. Subgraph of the Youtube social network. User-defined groups iden-
tify ground-truth communities.

Conversely, from synthetic benchmarks, where the planted communities re-
spect specific topological characteristics, real data annotation provides a seman-
tic partition of network nodes. Since none of the considered algorithms is pa-

4 Code available at https://sites.google.com/site/santofortunato/inthepress2
5 Datasets available at https://snap.stanford.edu/data/.

Exorcising the Demon 9

(a) (b) (c)

Fig. 2: Synthetic Benchmarks. (a) Running time of the compared algorithms
w.r.t. network size (number of nodes); (b) Avg. community resemblance score
per network size; (c) Community resemblance varying LFR mixing coefficient
(number of nodes 106). In (b-c) the NF1 scores for NodePerception are omit-
ted due to their low values (NF1≤0.2).

rameter free, in our analysis we instantiate each one of them multiple times
performing a grid-search estimation of the optimal parameter values for each
target network, thus ensuring that we compare their best performances. One
way to asses the effectiveness of a CD algorithm is to compare how much the
communities it identifies can provide a good approximation of a given ground
truth partition. To do so we apply a community resemblance score proposed in
[17], NF1 = F1∗Coverage

Redundancy ∈ (0, 1]. NF1 can be applied to both crisp/overlapping

partitions. It is maximized when: (i) the average F1 (harmonic mean of preci-
sion and recall) is maximal (perfect match), (ii) the computed partition provide
a complete coverage for the ground truth one (iii) the redundancy is minimized
(i.e., each identified community is matched with a distinct ground truth one).
As shown in [17] it is possible to compute F1 (and thus NF1) paying a linear
complexity in the size of the community set X.

3.1 Experimental Results

Synthetic Benchmarks. In Fig. 2 we report the execution time and NF1 score
for the compared CD approaches. Our experiments show that Angel is able

Angel Demon PanDemon NodePerception SLPA

emailEu 3.53 4.72 2.34 9.91 2.42

Amazon 88.49 16862.61 3032.63 256.09 504.61

dblp 115.44 24273.36 1059.54 382.43 321.46

Youtube 2209.20 8362.28 4076.98 11533.74 2860.01

Table 2: Running Times. The execution times reported are expressed in sec-
onds and do not include network loading and results serialization on file. Pan-
Demon has been executed on 16 cores.

10 Giulio Rossetti

sensibly to improve the running times of its competitors while increasing the
network size. In particular, it is worth noticing that Fig. 2(a) reports execution
times on a log scale: considering the average runtime of Angel on the generated
100k nodes graphs it registers a speedup of an order of magnitude w.r.t. its com-
petitors. In Fig.2(b-c) the NF1 score is used to compare the adherence of the
partitions identified by the selected CD algorithms to the ground truth ones: we
omitted NodePerception’s results since their overall NF1 were always lower
than 0.4. In particular Fig. 2(b) compare the average NF1 scores obtained by
each algorithm on different sized LFR graphs. To compute the NF1 mean value
for the pair < algorithm, network size > we considered the results provided by
the optimal parameter configuration w.r.t. each network size instantiation (e.g.,
varying graph density and mixing coefficient). Among the compared methods
Angel is always able to reach the highest scores, often producing the perfect
match for the planted communities. Fig. 2(c) underline the impact of the LFR
mixing coefficient on the quality of extracted communities once fixed the net-
work size. We can observe that Angel and SLPA can assure relatively stable
performances while varying µ.

Evaluation on Real World Data. Table 2 shows the running times – ex-
pressed in seconds – of the compared CD approaches when applied to the se-
lected networks. Similarly to what observed in the synthetic scenario, Angel
is constantly able to outperform its competitors, often reducing the execution
times of one or more orders of magnitude. Differently from the synthetic scenario,
when it comes to assessing community resemblance – quantitative values in Ta-
ble 3 – we observe a relatively low quality for all the partitions produced by the
compared algorithms. Indeed, such results are somehow expected. Conversely,
from the synthetic benchmark where the planted communities were designed to
follow specific topological characteristics, the semantic annotation provided for
the analyzed real-world network do not necessarily reflect structural properties
[8]. Such decoupling makes difficult, if not impossible, for CD algorithms that do
not leverage semantic information to capture the same partition identified by the
ground truth. However, even in this more complex scenario, Angel communities
are the ones able to better approximate the provided ground truths. To provide
a statistical significance bound to our experiments on real data we also applied

Angel Demon PanDemon NodePerception SLPA

emailEu 0.51 0.20 0.04 0.12 0.23

Amazon 0.17 0.10 0.12 0.05 0.09

dblp 0.52 0.32 0.52 0.02 0.27

Youtube 0.19 0.08 0.08 0.04 0.18

Table 3: Community Resemblance. NF1 scores achieved by the compared al-
gorithms on the real world datasets. For each model, we report the score achieved
by its optimal parameter settings.

Exorcising the Demon 11

a Friedman test [7] with Li post-hoc [10] on the evaluation proposed in Table
3. The test was rejected for the NF1 scores with a p-value of 0.05, thus imply-
ing that the compared methods do actually behave differently when tested on
multiple datasets. Moreover, the post-hoc underlined that Angel significantly
outperforms NodePerception under the same confidence interval, and all the
others when p-value is imposed equal to 0.1.

4 Related Works

Community discovery is a widely discussed and studied problem able to attract
the attention of heterogeneous communities. As already discussed, researchers
continuously propose novel approaches with the aim of solving specific instan-
tiation of this complex, and ill-posed, problem. Due to the massive literature
available in this field, during the years several attempts were made to organize
and cluster methods identifying some common grounds. Among the others, the
surveys of Fortunato [6] and Coscia [3] propose complete, detailed and extensive
taxonomies for classic algorithms. However, due to the peculiar problem defini-
tion, also more thematic surveys emerged, focusing for instance on overlapping
[20], directed [11], node-centric [18] as well as dynamic community discovery [14].

Our algorithmic solutions has a very specific goal: efficiently identify overlap-
ping network partitions following a bottom-up, node-centric, strategy. In litera-
ture, such strategy is often adopted while analyzing social network contexts [16],
scenarios in which it is important to take into account the individual perspective
on their local communities. Angel implements such model leveraging individual
ego-networks to access the node-centric perspective of the analyzed social graph.
Such strategy, originally proposed by [4] were also extended to parallel imple-
mentations, as in [1], and generalized in a high-level framework [19]. Finally,
several approaches leverage the concept of ego-network as the basilar brick to
propose heterogeneous community definitions [5]. Other common strategies to
design node-centric approaches are the seed set expansion [12], and community
diffusion ones [13].

5 Conclusion

In this paper, we introduced Angel, a node-centric approach to overlapping
community discovery. Angel was designed with the aim of lowering the com-
putational complexity of existing approaches while ensuring the identification of
high-quality partitions. Experimental results, both on synthetic and real-world
networks, highlight the efficiency and effectiveness of the proposed approach,
underlying its ability to outperform its direct competitors. As future works, we
plan to extend Angel to the analysis of dynamic network topologies.

12 Giulio Rossetti

Acknowledgment

This work is partially supported by the European Community’s H2020 Program
under the funding scheme “INFRAIA-1-2014-2015: Research Infrastructures”
grant agreement 654024, http://www.sobigdata.eu, “SoBigData”.

References

1. M. Amoretti, A. Ferrari, P. Fornacciari, M. Mordonini, F. Rosi, and M. Tomaiuolo.
Local-first algorithms for community detection. In KDWeb, 2016.

2. A. Condon and R. M. Karp. Algorithms for graph partitioning on the planted
partition model. Random Structures and Algorithms, 18(2):116–140, 2001.

3. M. Coscia, F. Giannotti, and D. Pedreschi. A classification for community discovery
methods in complex networks. Statistical Analysis and Data Mining, 2011.

4. M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi. Demon: a local-first discov-
ery method for overlapping communities. In International conference on Knowledge
discovery and data mining, pages 615–623. ACM, 2012.

5. A. Epasto, S. Lattanzi, and R. Paes Leme. Ego-splitting framework: from non-
overlapping to overlapping clusters. In SIGKDD, pages 145–154. ACM, 2017.

6. S. Fortunato. Community detection in graphs. Physics reports, 486(3), 2010.
7. M. Friedman. The use of ranks to avoid the assumption of normality implicit in

the analysis of variance. Journal of the american statistical association, 32, 1937.
8. D. Hric, R. K. Darst, and S. Fortunato. Community detection in networks: Struc-

tural communities versus ground truth. Physical Review E, 90(6):062805, 2014.
9. A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing

community detection algorithms. Phys. Rev. E, 78(4):046110, Oct. 2008.
10. J. D. Li. A two-step rejection procedure for testing multiple hypotheses. Journal

of Statistical Planning and Inference, 138(6):1521–1527, 2008.
11. F. D. Malliaros and M. Vazirgiannis. Clustering and community detection in di-

rected networks: A survey. Physics Reports, 533(4):95–142, 2013.
12. F. Moradi, T. Olovsson, and P. Tsigas. A local seed selection algorithm for over-

lapping community detection. In ASONAM. IEEE, 2014.
13. U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect

community structures in large-scale networks. Physical Review E, 76(3), 2007.
14. G. Rossetti and R. Cazabet. Community discovery in dynamic networks: A survey.

ACM Computing Surveys (CSUR), 51(2):35, 2018.
15. G. Rossetti, L. Milli, and R. Cazabet. Cdlib: a python library to extract, compare

and evaluate communities from complex networks. Applied Network Science, 2019.
16. G. Rossetti, L. Pappalardo, R. Kikas, D. Pedreschi, F. Giannotti, and M. Du-

mas. Community-centric analysis of user engagement in skype social network. In
ASONAM. ACM, 2015.

17. G. Rossetti, L. Pappalardo, and S. Rinzivillo. A novel approach to evaluate com-
munity detection algorithms on ground truth. In Complex Networks, 2016.

18. G. Rossetti, D. Pedreschi, and F. Giannotti. Node-centric community discovery:
From static to dynamic social network analysis. OSNEM, 3:32–48, 2017.

19. S. Soundarajan and J. E. Hopcroft. Use of local group information to identify
communities in networks. Transactions on Knowledge Discovery from Data, 2015.

20. J. Xie, S. Kelley, and B. K. Szymanski. Overlapping community detection in
networks: The state-of-the-art and comparative study. Computing Surveys, 2013.

21. J. Xie and B. K. Szymanski. Towards linear time overlapping community detection
in social networks. In PAKDD, 2012.

