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Several research studies have shown that complex networks modeling real-world phenomena are character-
ized by striking properties: (i) they are organized according to community structure, and (ii) their structure
evolves with time. Many researchers have worked on methods that can efficiently unveil substructures in
complex networks, giving birth to the field of community discovery. A novel and fascinating problem started
capturing researcher interest recently: the identification of evolving communities. Dynamic networks can be
used to model the evolution of a system: nodes and edges are mutable, and their presence, or absence, deeply
impacts the community structure that composes them.

This survey aims to present the distinctive features and challenges of dynamic community discovery and
propose a classification of published approaches. As a “user manual,” this work organizes state-of-the-art
methodologies into a taxonomy, based on their rationale, and their specific instantiation. Given a definition
of network dynamics, desired community characteristics, and analytical needs, this survey will support re-
searchers to identify the set of approaches that best fit their needs. The proposed classification could also
help researchers choose in which direction to orient their future research.
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1 INTRODUCTION

Complex networks (Newman 2003) are popular tools—both theoretical and analytical—commonly
used to describe and analyze interaction phenomena that occur in the real world. Social ties for-
mation, economic transaction, face-to-face communication, and the unfolding of human mobility
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are a few examples of observable events that are often investigated using instruments borrowed
from graph theory.

One main issue to address while studying this type of real-world events lies in the identification
of meaningful substructures hidden within the overall complex system. How to partition a
complex network into communities is a widely studied problem (Fortunato 2010; Coscia et al.
2011): several works, from a broad set of disciplines, proposed different community definitions
and approaches able to retrieve such structures automatically. The magnitude of works that
cover this fascinating topic highlights its ubiquity: communities can capture groups of strongly
connected online documents, individuals sharing a social environment as well as products being
frequently purchased together.

Most of the scientific literature dedicated to the community discovery (CD) problem starts from
a very stringent assumption: real-world phenomena can be modeled with static networks—that
is, mathematical objects frozen in time. Unfortunately, such a simplified scenario seldom fits the
evolving nature of the world we live in. Indeed, one of the key features that characterize interaction
phenomena is that they naturally unfold through time: social interactions evolve, phone calls have
a limited duration, and human mobility changes as time goes by. The temporal dimension conveys
highly valuable information that the analyst needs to exploit to better understand the reality that
he or she observes. The need to include such knowledge in the tools offered by graph theory has
been one of the linchpins in an entirely new field of investigation that emerged in the past decade:
dynamic network analysis. Within this new field, well-known problems defined in static settings
were reformulated, and time-aware approaches able to solve them were proposed.

Among them, dynamic community discovery (DCD) represents one of the most challenging
problems. As time goes by, nodes and edges can join and leave a dynamic network, producing rel-
evant perturbations on its topology: communities are the basic bricks of that complex structure and
as such are profoundly affected by local changes. Whereas classical CD algorithms aim to identify
hidden substructures, dynamic approaches are devoted to the tracking of such local topologies and
of their mutations, a goal that can be fulfilled pursuing different strategies and modeling choices.

In this survey, we have thus chosen to design a taxonomy of DCD algorithms not by considering
the technical solution they use to find them but rather the strategy they use to identify time-aware
meaningful network substructures. Our aim is to support researchers and analysts in choosing the
approach, or at least the class of approaches, that better fits their needs and data. For each of the
proposed classes of DCD algorithms, we discuss both advantages and drawbacks. Moreover, we
provide a brief description of those methods that implement their rationale.

To provide a comprehensive view of this field of research, we also discuss issues related to the
evaluation of DCD algorithms, which requires modifications compared to the static case; more-
over, we summarize other works on DCD, such as dynamic community visualization methods, and
analytical applications to real-world problems.

The survey is organized as follows. In Section 2, we discuss the general concepts behind dynamic
network analysis and the mathematical models used to describe, in graph-theoretical terms, tem-
poral evolving phenomena. In Section 3, we formalize the CD problem on dynamic networks and
discuss community life cycle and instability. In Section 4, we introduce our DCD taxonomy de-
scribing the peculiarity, pros, and cons of each class of approaches. A detailed description of the
methods is then made available in the appendix. In Section 5 we introduce and discuss two classes
of techniques often used to compare and characterize communities identified by DCD algorithms,
namely internal and external quality evaluation. In Section 6, we review some real-world sce-
narios that have been studied through the lenses of dynamic community mining and address the
problem of visualizing analytical results. Section 7 concludes the survey, providing insights into
DCD-related open issues.
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Fig. 1. Network representations. Moving from a static graph to interaction ones, the model complexity in-
creases while the grain of the temporal information available decreases (Rossetti 2015).

2 DYNAMIC NETWORKS

Since its beginning, complex network analysis has been approached by researchers through the
definition of very specific mining problems. Among them, CD (Fortunato 2010; Coscia et al. 2011),
link-based object ranking (Getoor and Diehl 2005; Duhan et al. 2009), and frequent pattern mining
(Milo et al. 2002; Alon 2007) are examples of analytical tasks originally defined on networks frozen
in time.

The absence of the time dimension comes from historical reasons: the graph theory ancestry
of the field and the scarcity of existing dynamic data at the time the field of complex networks
emerged.

With the explosion of human-generated data, often collected by sociotechnical platforms, more
and more datasets having rich temporal information that can be studied as dynamic networks
becomes available. Many works tried to transpose well-known graph mining problems from static
networks to temporal networks: temporal motifs mining (Kovanen et al. 2011), diffusion (Lee et al.
2012), link prediction (Tabourier et al. 2016), and so forth.

To better address the central topic of this survey, in Section 2.1 we introduce the most used
formalisms to represent dynamic networks, and in Section 2.2 we discuss one of the leading issues
arising when dealing with temporally annotated networks: network memory.

2.1 Network Models

Time plays a crucial role in shaping network topologies. One of the most important issue to ad-
dress to reason on time-evolving networks is thus related to the mathematical formalism used to
describe them. Figure 1 shows four different conceptual solutions that gradually introduce the tem-
poral dimension in the network modeling process. In one respect, we find the complete atemporal
scenario (i.e., a single network snapshot capturing a static glimpse of a dynamic phenomenon):
network dynamics can be gradually introduced by adopting labels that weights nodes and edges,
thus capturing an aggregate network. Following this approach, weights models the number of oc-
currence of a given node/edge in a predetermined observation window: with this little increment
in the model complexity, several time-dependent analyses neglected before become possible (i.e.,
tie strength estimation). Aggregation strategies, however, suffer a severe limitation: they do not
capture dynamics. For this reason, several works model dynamic phenomena with temporally or-
dered series of network snapshots. This simple modeling choice allows one to efficiently keep track
of the perturbations occurring on the network topology. However, while the expressivity of the
model is increased, the analytical complexity increases as well. When dealing with network snap-
shots to perform time-aware mining tasks, two issues need to be addressed: (i) how to keep track
of multiple stages of the network life and (ii) how to harmonize the analytical results obtained in
a snapshot with the outcome of subsequent ones.

Dynamic network partition, as well as aggregation, suffers from a pressing issue: to be
performed, a temporal granularity—a threshold to transform the original dynamic system—needs
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to be fixed. Since the identification of such a threshold is not trivial—it is, indeed, context
dependent and often profoundly impacts analytical results—recent works propose modeling
dynamic phenomena without any aggregation, keeping all temporal details. Such studies usually
decompose a dynamic network in its elementary bricks: temporally ordered, timestamped,
interactions or relations. We will describe in more details such an approach, namely temporal
networks modeling, in the next section.

Temporal networks, avoiding aggregation, allow for a complete and fine-grain description of
network dynamics: as a drawback, this solution increases the complexity of the network model
and requires the definition of novel analytical methodologies.

Different problems, as well as available data, impose different modeling choices: static networks,
as well as weighted ones, are often used to identify stable patterns and describe the actual status
of a network, whereas snapshots and interactions are proxies for the study of increasingly dy-
namic scenarios. Obviously, starting from fine-grain temporal data, it is possible to generate all
of the other models by subsequent aggregations. Since we are interested in community detection
approaches that deal with temporally annotated graphs, in the following we will highlight the
major strengths and drawbacks of the most used models in this context: temporal networks and
network snapshots. In this survey, we will not discuss static and weighted networks, as by defi-
nition, they do not allow one to make direct use of temporal information, thus reducing dynamic
problems to static ones: for an in-depth overview of CD approaches defined for such scenarios,
refer to Fortunato (2010), Fortunato and Hric (2016), Xie et al. (2013b), and Coscia et al. (2011).

2.1.1  Temporal Networks. Several formalisms have been proposed to represent evolving net-
works without loss of information: temporal networks (Holme and Saramiki 2012), time-varying
graphs (Casteigts et al. 2012), interaction networks (Rossetti et al. 2015), and link streams and
stream graphs (Viard et al. 2016; Latapy et al. 2017), to name the most popular. Hereafter, we use
the term temporal networks with a general definition that encompasses all of those formalisms.

A temporal network models a dynamic structure in which both nodes and edges may appear
and disappear as time goes by. More formally, we have the following definition.

Definition 2.1 (Temporal Network). A temporal network is a graph G = (V,E, T), where V is a set
of triplets of the form (v, s, t.), with v a vertex of the graph and t;,t, € T respectively being the
birth and death timestamps of the corresponding vertex (with ¢; < t.); E is a set of quadruplets
(u, v, ts, t.), with u,v € V being vertices of the graph, and ¢, ¢, € T respectively being the birth
and death timestamps of the corresponding edge (with ¢; < t,).

Depending on the interaction semantics, we can deal with undirected temporal networks (TNs) or
with directed temporal networks (DTNs).

The high-level definition proposed encompasses nodes and edges with or without duration (if
ts = t.). Often, a strong distinction is made between those two categories. Networks without edges
durations are often referred to as contact sequences and those with durations as interval graphs
(Holme and Saramiki 2012). We argue that for community detection, this distinction is not rel-
evant to characterize the nature of temporal networks. Indeed, a contact sequence can always be
transformed into an interval graph by extending edges of an infinitesimal amount. Conversely, an
interval graph can be discretized into a contact sequence at the desired resolution. However, such
transformations will not fundamentally change the nature of the network.

Differently, a distinction must be made between two types of temporal network, interaction
networks and relation networks: the former model interactions either with duration (phone calls,
face-to-face communication, etc.) or not (emails, short messages, etc.) that can repeat as time goes
by. Relation networks, conversely, model more stable relations (friendship, coworker, belonging to
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the same group, etc.). In relation networks, the state of the graph at any given time is well defined
and can be studied through classical static analysis tools. Conversely, in interaction networks, the
analyst needs to focus his attention on a temporal windows or on aggregations of some sort to
obtain a stable dynamic graph that does not change dramatically between close time periods. This
distinction is important, as many methods—particularly the ones working on edge streams—update
the state of communities after each atomic network perturbation. Indeed, classical approaches do
not produce interpretable results when edges are instantaneous or have very low persistence (e.g.,
phone calls).

Due to the lack of literature, and particularly a formal definition able to distinguish between
these two types of temporal networks, in this article we have no choice but to ignore this distinc-
tion. We stress that most algorithms present in the current survey implicitly assume a relation
network, save three methods (Matias and Miele 2016; Viard et al. 2016; Himmel et al. 2016), specif-
ically designed to work with edges without duration.

2.1.2  Network Snapshots. Often, network history is partitioned into a series of snapshots, with
each one of them corresponding either to the state of the network at a time ¢ (relation network)
or to the aggregation of observed interactions during a period (interaction network).

Definition 2.2 (Snapshot Network). A snapshot graph G, is defined by an ordered set (G,
G; . ..G;) where each snapshot G; = (V;, E;) is univocally identified by the sets of nodes V; and
edges E;.

Depending on the network semantic, we can deal with undirected snapshot graphs (SNs) or di-
rected snapshot graphs (DSNs). Dynamic networks represented using snapshots are similar in
nature to multiplex (or multislice) networks, which are unordered sets of static networks. To learn
more on community detection on multislice networks, readers can refer to Kivel et al. (2014). When
the adaptation of methods to the dynamic case have been explored, methods will be included in
the present article (e.g., see Mucha et al. (2010)).

Network snapshots can be effectively used, for instance, to model a phenomenon that generates
network perturbations (almost) at regular intervals. In this scenario, context-dependent tempo-
ral windows are used to partition the network history into consecutive snapshots: time-bounded
observations describing a precise, static, discretization of the network life.

The snapshot-based analysis is frequently adopted for networks with a natural temporal dis-
cretization, due to the balance that they propose between model complexity and expressivity. SNs
allow application of static networks tools on evolving networks. Algorithms, as well as network
measures and definitions, can be independently applied to each temporal partition without the
need of novel analytical tools that explicitly manage temporal information. SNs can also be seen
as a convenient modeling choice to avoid the instability problem of temporal networks, using
aggregation over periods of time and sliding windows (Morini et al. 2017).

However, the strength of this model also represents its major drawback. Even if network snap-
shots reduce the analytical complexity and allow for task parallelization, they intrinsically imply
the need for a reconciliation phase in which the independently computed, partial results are com-
bined. The need for two-step (mining and reconciliation) procedures can often be the cause of the
quality degradation of analytical results. Another issue related to the SN model is the identification
of the optimal window size to use when generating the snapshots—a choice that can profoundly
affect the outcome of the subsequent analysis.

2.1.3 Discussion: Temporal Networks Versus Snapshots. An important issue to address is the
relation between snapshot networks and temporal networks, since, as we will see in Section 4,
a generic DCD algorithm is usually tailored to exploit only one of such representations. The
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differences among TNs and SNs are tightly connected to the constraints that such models impose:
the choice of employing TNs instead of SNs (or vice versa) can have significant implications on
aspects related to the storage of data and the processing part of the designed analysis. In particular:

(1) If the original data already describe punctual states of the network evolution (ie., a
weekly/monthly/yearly complete crawl of a system), the snapshot model is obviously the
natural one to adopt. However, if a more precise temporal information is available (i.e., an
email, a friend list, or phone call dataset with timestamps of finite precision), both solutions
can be considered.

(2) Since, unlike TNs, SNs are composed of aggregated data, the typical complexity of processes
on an SN depends on the chosen level of aggregation and on the sizes of the produced
snapshots (number of nodes/edges). For instance, methods for DCD on SNs typically need
to run a community detection process on each snapshot. The cost of running a CD algorithm
at t + 1 typically does not depend on the number of changes between SNs at t and ¢ + 1.
Processes running on TNs, however, typically depend mainly on the number of network
modifications, not on the granularity or the total number of nodes.

2.2 Network Memory

A modeling choice that profoundly affects the analysis performed on dynamic networks is the
system memory. When the analyzed data describe an interaction network (i.e., emails or phone
calls) not composed of long-lasting relations, most methods require transforming it into a relation
network—for instance, to assign to each edge a duration appropriate to consider it as relation
network. Such transformation can yield snapshots (if synchronized) or temporal networks (if each
edge duration computation is done independently).

Two main scenarios are often considered: (i) a perfect memory network (or accumulative growth
scenario) and (ii) a limited memory network. In the former scenario, nodes and edges can only join
the network: the dynamic network has a perfect memory, meaning that old edges/nodes cannot
disappear (e.g., a citation graph). Conversely, in the latter, nodes/edges can vanish as time goes by
(i.e., in a social network context, edge disappearance can be used to model the decay of interactions’
social effect).

We call time to live (TTL) the artificially defined duration of an edge. Several strategies exist to
fix this TTL:

— Fixed-size static time window: The TTL is equal for all network entities, and there is a finite
set of possible periods whose start and end dates are defined in advance. This strategy
produces snapshot networks.

— Fixed-size sliding time window: The TTL is equal for all network entities, but it starts inde-
pendently for each one of them at the moment of their first appearance (i.e., an email graph
in which each email is considered to have the same social persistence starting from the time
it is made).

— Dynamic-size time window: The TTL is equal for all network entities at a given time but
depends on the current network status (i.e., a system for which it is interesting to capture
bursts of interactions with different frequency).

— (Global/local) decay function: The TTL of each node/edge is defined independently, usually
as a function of the global/local network activity (i.e., fitting the interarrival time distribu-
tion of nodes or edges for the whole network, as well as for the individual node pair).

The assumptions made on the persistence of network entities (e.g., the strategy identified to fix
their TTL) play a crucial role in the results provided by time-aware mining algorithms.
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3 DYNAMIC COMMUNITY DISCOVERY

As discussed in the previous section, the temporal dimension profoundly impacts the analytical
tasks that are commonly performed on complex networks. Among them, a problem that has al-
ways received high attention from the scientific community is CD. Networks built on real-world
data are complex objects often composed of several substructures hidden in an apparent chaos:
CD aims to decompose them in meaningful subtopologies that better describe local phenomena.
Even though the problem itself is intuitively clear, its formulation is particularly ill posed: given
a specific network, different partitions can exist, each of them capturing different but valuable
information. In the past decades, we have witnessed the proliferation of an extensive literature
on such subject, each work proposing its approach optimizing the partition for a different quality
function (modularity, density, conductance, etc.), thus making the comparison between different
partitions challenging. The widespread different community definitions lead to a renewed aware-
ness: the perfect CD algorithm does not exist. Conversely, there exists a set of algorithms that
perform better on a specific declination of the general problem.

In this section, we formally define the CD problem on dynamic graphs (Section 3.1) and describe
how its solutions can be used to study the community life cycle (Section 3.1.1). Moreover, we
discuss two relevant topics related to this complex problem: community instability and temporal
smoothing (Section 3.2).

3.1 Problem Definition

CD is a typical problem in complex network analysis. One of the main reasons behind its com-
plexity is undoubtedly related to its ill posedness. Indeed, several community definitions have been
proposed so far. Classic works intuitively describe communities as sets of nodes closer among them
than with the rest of the network, whereas others, looking at the same problem from another angle,
only define such topologies as dense network subgraphs. To maintain a more general perspective,
in this survey we will adopt a metadefinition—borrowed from Coscia et al. (2011)—to create an
underlying concept able to generalize to all variants found in the literature (verbatim from Coscia
et al. (2011)).

Definition 3.1 (Community). A community in a complex network is a set of entities that share
some closely correlated sets of actions with the other entities of the community. We consider a
direct connection as a particular and very important kind of action.

Given the high-level nature of the adopted problem definition, one could prefer the term node
clustering over community detection. Due to the lack of consensus in the literature, we choose to
keep the term communities that is specific to the field of networks mining and analysis.

Once we have a fixed definition of community, we can formally define the specific task of iden-
tifying and tracking mesoscale structures in a dynamic network scenario. Even in this case, we
adopt a generic definition that does not make any assumption about the nature of communities
and that correspond to any dynamic cluster of nodes.

Definition 3.2 (Dynamic Community Discovery). Given a dynamic network DG, a dynamic com-
munity DC is defined as a set of distinct (node, periods) pairs: DC = {(v1, P1), (v2, P2), . .., (Un, Pn)},
with P, = ((£50, te0), (ts15te1) - - - (tsn» ten)), With tg. < tes. DCD aims to identify the set C of all
dynamic communities in DG. The partitions described by C can be neat as well as overlapping.

Within this general definition fall approaches with different goals. In particular, two main ana-
lytical aims can be identified: (i) enable for an efficient identification of optimal partitions for each
instant of the evolution and (ii) build evolutive chains describing the life cycle of communities.
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3.1.1  Community Life Cycle. The persistence along time of communities subjected to progres-
sive changes is an important problem to tackle. As illustrated by the famous paradox of the ship
of Theseus, deciding if an element composed of several entities at a given instant is the same or
not as another one composed of some—or even none—of such entities at a later point in time is
necessarily arbitrary and cannot be answered unambiguously.

Most works focused on community tracking agree on the set of simple actions that involve
entities of a dynamic network: node/edge appearance and vanishing. Indeed, such local and atomic
operations can generate perturbations of the network topology able to affect the results produced
by CD algorithms. As a consequence of this set of actions, given a community C observed at
different moments in time, it is mandatory to characterize the transformations it undergoes. A
first, formal categorization of the transformations that involve communities were introduced in
Palla et al. (2007), which listed six of them (birth, death, growth, contraction, merge, and split).
A seventh operation, continue, is sometimes added to these. In Cazabet and Amblard (2014), an
eighth operation was proposed (resurgence).

These operations, illustrated in Figure 2, are the following:

— Birth: The first appearance of a new community composed of any number of nodes.

— Death: The vanishing of a community: all nodes belonging to the vanished community lose
this membership.

— Growth: New nodes increase the size of a community.

— Contraction: Some nodes are rejected by a community, thus reducing its size.

— Merge: Two communities or more merge into a single one.

—Split: A community, as consequence of node/edge vanishing, splits into two or more
components.

— Continue: A community remains unchanged.

— Resurgence: A community vanishes for a period, then comes back without perturbations as
if it has never stopped existing. This event can be seen as a fake death-birth pair involving
the same node set over a lagged time period (e.g., seasonal behaviors).

Not all operations are necessarily handled by a generic DCD algorithm. Even though the abstract
semantics of such transformations are clear, different works propose to handle them differently.
Among them, merge, split, and resurgence are often defined with the support of ad hoc similarity
and thresholding functions, as well as community transformation strategies. For instance, when
two communities are chosen to be merged, several strategies can be followed to handle the merge
action (Cazabet and Amblard 2014):

— Absorption: After the merge, one community disappears while the other persists. In this
scenario, defining a policy to decide which community will cease to exist is an open is-
sue. Among possible choices, we can cite the following: (i) remove the oldest/youngest one,
(ii) remove the biggest/smallest one, and (iii) remove the community with the highest per-
centage of nodes included in the other.

— Replacement: After the merge action, affected communities vanish and a wholly new one
forms. This solution, although straightforward, causes sudden disruptions on the continuity
of the evolution of communities.

Such a complex scenario symmetrically applies to the specific implementation of all remaining
community actions.

Despite the peculiarities introduced by each approach when defining topology transformations,
the identified events allow to describe for each community its so-called life cycle (an example is
shown in Figure 3).
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Birth Death

Growth Contraction

Continue

Resurgence

552 052 2| 12

Fig. 2. Community events. This toy example captures the eight events that regulates dynamic community
life. The first row shows birth and death, the second row shows growth and contraction, the third row shows
merge and split, the fourth row shows continue, and the last row shows resurgence.
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time
Fig. 3. Community life cycle. As time goes by, dynamic communities experience mutations that are often
abstracted by adopting a predefined set of operations. This toy example highlights life cycles of communities

A and C, composed of all operations that modify a community structure, namely birth, continue, growth,
split, merge, contraction, resurgence, death.

Definition 3.3 (Community Life Cycle). Given a community C, its community life cycle (which
univocally identifies C’s complete evolutive history) is composed of the directed acyclic graph
(DAG) such that (i) the roots are birth events of C, and of its potential predecessors if C has been
implicated in merge events; (ii) the leafs are death events, corresponding to deaths of C and of its
successors, if C has been implicated in split events; and (iii) the central nodes are the remaining
actions of C, its successors, and predecessors. The edges of the tree represent transitions between
subsequent actions in C life.

In principle, it is possible to perform a life cycle analysis starting from the output of any generic
DCD approach.

3.2 Community Instability and Temporal Smoothing

One of the main issues encountered by dynamic community detection approaches is the instability
of solutions. This type of problem comes from the very nature of communities.

It is widely accepted that there is not a single valid decomposition in communities of a complex
network issued from field data but, instead, several possible ones. Moreover, most algorithms gen-
erate partitionings in which a node is assigned unambiguously to one and only one community.
Indeed, we are aware that such a scenario represents a simplification: nodes often belong to several
communities, and the belonging to each of them is not necessarily binary (as illustrated by fuzzy
partitions approaches). Another issue is that the choice between one partition and another is some-
what arbitrary: moreover, a generic algorithm executed on the same network that experienced a
few topological variations—or even none in case of stochastic algorithms—might lead to different
results. To take a concrete example, if the problem of finding the solution of optimal modularity in
a network is so complex, it is because many local maxima exist, whose modularity values are very
close to the optimal one. Greedy approaches such as the Louvain method (Blondel et al. 2008) can
find a local maximum; however, a slight variation of the initial network might switch from one
local maximum to another, yielding significantly different partitions, both comparable in terms of
the modularity score.

All such observations naturally lead to the general problem of identifying stable network de-
compositions. This is a major problem for dynamic community detection, as one cannot know if
the differences observed between communities found on the network at time ¢ and those found at
t + 1 are due to the evolution of communities or to the algorithm’s instability.
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This problem was explored in Aynaud and Guillaume (2010). The authors picked three
well-known static community detection algorithms (WalkTrap (Pons and Latapy 2006), Lou-
vain (Blondel et al. 2008), and fast greedy modularity (Clauset et al. 2004)), and evaluated the
consistency of their results on slight modifications of a network. To do so, they compare the
modularity (Newman 2004; Newman and Girvan 2004) and normalized mutual information
(NMI (Lancichinetti et al. 2008)) scores between successive results and quantify the number of
transformations between two consecutive runs (where a transformation is the change in affiliation
of a node). The results revealed the extent of the problem: on a network composed of 9,377 nodes
and 24,107 edges, constructed from a coauthorship network, the removal of a single node leads to
NMIs between successive results of—respectively to each algorithm—0.99, 0.9, and 0.75. The result
is even more striking when looking at the number of unitary change: a single node modification
respectively leads to approximately 500, 2,000, and 3,000 unitary changes in communities.

A variety of solutions has been proposed to solve, or at least mitigate, this instability problem.
Their common goal is to smooth out the evolution of communities. Among them, we can identify
the following main categories: smoothing by bootstrap, explicit smoothing, implicit smoothing,
and global smoothing.

Smoothing by bootstrap. This technique (used in particular in Hopcroft et al. (2004) and Rosvall
and Bergstrom (2010)) consists of running multiple times the same algorithm on the same static
network, searching for invariants, stable parts of the communities. The stable community cores,
which are less unstable than raw community partitions, can be more efficiently tracked.

Explicit smoothing. Some algorithms (e.g., Lin et al. (2009) and Folino and Pizzuti (2014)) ex-
plicitly introduce smoothing in their definition, requiring the partition found at step ¢ to have a
certain degree of similarity with the partition found at ¢t — 1. These methods typically introduce a
parameter « € [0, 1], which determines the trade-off between a solution that is optimal at ¢ and a
solution maximizing the similarity with the result at ¢ — 1.

Implicit smoothing. Some methods do not explicitly integrate the similarity between consecutive
partitions but favor this similarity by construction. We can distinguish between two main scenarios
to do so:

(1) Methods that optimize a global metric, such as the modularity, can use the communities
found at the previous step as seeds for the current one (e.g., Shang et al. (2014) and Gorke
et al. (2010)). The probability of finding similar solutions from step to step is increased by
choosing an adequate algorithm that will explore in priority good solutions around seeds.

(2) Other approaches (e.g., Cazabet et al. (2010), Xie et al. (2013a), and Rossetti et al. (2017)) do
not try to optimize a global metric but locally update communities that have been directly
affected by modifications between the previous and the current step. In this case, the so-
lution at step t — 1 is kept unchanged but for communities directly affected by changes in
the network. In a slowly evolving graph, this guarantees that most of the partition stays
identical between two evolution steps.

Global smoothing. Instead of smoothing communities at a given step by considering the previ-
ous one, algorithms (e.g., Aynaud and Guillaume (2011) and Mucha et al. (2010)) can search for
communities that are coherent in time by examining all steps of evolution simultaneously. Such
a strategy can be applied, for instance, by creating a single network from different snapshots by
adding links between nodes belonging to different snapshots and then running a community de-
tection on this network. Another way to pursue in this rationale is to optimize a global metric on
all snapshots simultaneously. In both cases, the problem of instability naturally disappears, as the
detection of dynamic communities is performed in a single step.
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Fig. 4. Proposed classification for DCD algorithms. There are three high-level classes corresponding to dif-
ferent dynamic community definitions. Each of these classes is divided into subcategories corresponding to
different manners to solve a similar problem.

When designing a DCD algorithm, the decision to adopt a specific smoothing strategy has nonneg-
ligible impacts: indeed, it can lead to computational constraints, narrows the applicative scenarios,
and impacts results that it will be able to provide. For all of those reasons, in Section 4 we describe
a novel two-level taxonomy that exploits a characteristic of smoothing to discriminate among
different classes of DCD approaches.

4 CLASSIFICATION

In this section, we propose a classification, summarized in Figure 4, of DCD methods.

Three previous works, to the best of our knowledge, have proposed a classification of DCD
algorithms, although considering much fewer methods than the current survey. In Aynaud et al.
(2013), the following classes are identified:

— Two-stage approaches: Methods that first detect clusters at each timestep and then match
them across different timesteps

— Evolutionary clustering: Methods that detect communities at time ¢ based on the topology
of the graph at ¢ and on previously found community structures

— Coupling graphs: Algorithms that first construct a single graph by adding edges between
instances of nodes in different timesteps (coupling graph) and then run a classic CD on this

graph.

Two-stage approaches are then further divided into core-based, union graph—based, and survival
graph—based methods, corresponding to different solutions to solve the problem of graph matching.

In Hartmann et al. (2016), two high-level categories are identified: online and offline methods.
The survey focuses only on online algorithms, defined as methods that explicitly exploit informa-
tion about the graph structure and the community structure of previous timesteps, as opposed to
offline ones that also use information from following timesteps. Online methods are divided into
the following:

— Temporal smoothness methods that run a CD process from scratch at each step
— Dynamic update methods that do not run a process from scratch but instead update the
methods found in previous timesteps.
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These first two classifications are complementary and somewhat overlapping: coupling graph
methods are offline, but some two-stage approaches can also be offline, as they match communi-
ties across all timesteps. Two-stage approaches are a special case of temporal smoothness without
memory, whereas evolutionary clustering methods encompass both temporal smoothness and dy-
namic update methods.

Finally, in Masuda and Lambiotte (2016), the authors identify two different typologies of CD
approaches in temporal networks:

— Approaches focused on determining community evolution that, with certain statistical accu-
racy, aim to detect when and how reorganizations of communities take place. In this family
fall both the two-stage and model-based approaches.

— Single community structure methods whose goal is to find a single partition of the dynamic
graph by considering time as a third dimension of the data, added to the classical two ex-
pressed by the adjacency matrix. Among them fall the tensor factorization approaches like
the one introduced in Gauvin et al. (2014), where a single partition is identified and the
strength of each community per temporal snapshot is computed.

Some methods we found in the literature did not belong to any of these categories or could be
associated with several of them.

We decided to shape our classification as a two-level one, building it upon concepts shared by
existing classifications.

In our taxonomy, the higher level identifies three different definitions of what are dynamic com-
munities, without assumptions on the techniques used to find them. These high-level classes are
then refined into subcategories, which correspond to different techniques used to find communi-
ties corresponding to this definition.

There are three classes of approaches at the higher level of classification:

—The first one (Instant Optimal CD) considers that communities existing at ¢ only depend
on the current state of the network at t. Matching communities found at different steps
might involve looking at communities found in previous steps, or considering all steps, but
communities found at ¢ are considered optimal with respect to the topology of the network
at t. Approaches falling in this class are nontemporally smoothed.

—In the second class (Temporal Trade-off CD), communities defined at an instant ¢ depend
not only on the topology of the network at that time but also on the past evolutions of
the topology, past partitions found, or both. Communities at ¢ are therefore defined as a
trade-off between an optimal solution at t and known past. They do not depend on future
modification, an important point for on-the-fly CD. Conversely, from the approaches falling
in the previous class, Temporal Trade-off ones are incrementally temporally smoothed.

—In the third class (Cross-Time CD), the focus shifts from searching communities relevant at
a particular time to searching communities relevant when considering the whole network
evolution. Methods of this class search a single partition directly for all timesteps. Commu-
nities found at ¢ depend on both past and future evolutions. Methods in this class produce
communities that are completely temporally smoothed.

For each of these classes, we define subcategories corresponding to different techniques used to
solve a related problem. In the following, we address each one of them, discussing their advantages
and drawbacks. As we will highlight in the following, each class—due to its definition—is likely
to group together approaches designed to work on either network snapshots (SNs) or temporal
networks (TNs).
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Fig. 5. Instant Optimal. The identification of dynamic communities is conceptually decomposed in two sub-
problems: (i) independent extraction of the network partition for each timestep and (ii) matching of com-
munities belonging to distinct network observations. G, graph; P, partition; DC, dynamic community; C,
community.

Please note that to keep our classification concise, we do not include the description of each
method here. We provide a short description of methods included in each category in the appendix.

4.1 Instant Optimal Communities Discovery

This first class of approaches is derived directly from the application of static CD methods to the
dynamic case. A succession of steps is used to model network evolution and for each of them
is identified an optimal partition, as shown in Figure 5. Dynamic communities are defined from
these optimal partitions by specifying relations that connect topologies found in different, possibly
consecutive, instants.

A typical Instant Optimal technique has been identified as the two-stage approach in the liter-
ature (Aynaud et al. 2013). It can be described as a two-step process:

(1) Identify: Detect static communities on each step of evolution.
(2) Match: Align the communities found at step t with the ones found at step t — 1, for each
step.

It can be noted, however, that two-stage approaches and Instant Optimal communities do not en-
compass the same methods: indeed, two-stage techniques can be used with communities smoothed
out using previous communities, and therefore not Instant Optimal. Yet some methods find Instant
Optimal communities but match these communities considering all partitions simultaneously, in-
stead of using an iterative process. In the following, we discuss the advantages and drawbacks of
this class of algorithms and the dynamic network models to which it can be applied.

Advantages. The major benefit of adopting this approach is that it is built directly on top of
existing works on static community detection. Since communities are Instant Optimal, usual DC
algorithms can be used at each step. The matching process can also be derived from existing lit-
erature, as set matching is an extensively studied problem. Another advantage of this method is
that it easily enables parallelization. Community detection can be a time-consuming process on
large networks, and since the communities at each step are found independently, it is possible to
run the detection at each step in parallel.

Drawbacks. The main limit of this approach is the instability of community detection algorithms
(see Section 3.2 for more details on instability). Since the same algorithm can find different com-
munities on the same network, it is hazardous to distinguish between changes due to the evolution
of the community structure and changes due to the instability of algorithms. Recent approaches
propose solutions to circumvent this weakness by studying the most stable part of communities,
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called community cores (Rosvall and Bergstrom 2010) or by considering all partitions simultane-
ously instead of matching only with earlier ones (Goldberg et al. 2011).

Network models. Due to its definition, algorithms that fall in this class can be used only with net-
work snapshots, not with temporal networks. As the community detection needs to be performed
entirely from scratch at each evolution step, the whole network needs to be considered, not only
the changes between one step and another.

Subcategories. The first step of the process, identifying communities relevant at each timestep,
can usually be done with any CD algorithm. However, the methods used to match communities
found at different steps differ. We identified three subclasses: (i) iterative similarity-based, (ii) iter-
ative core-based, and (iii) multistep matching.

4.1.1 lterative Similarity-Based Approaches. In similarity-based approaches, a quality function
is used to quantify the similarity between communities in different snapshots (e.g., Jaccard among
node sets). Communities in adjacent time-steps having the highest similarity are considered part
of the same dynamic community. Particular cases can be handled, such as a lower threshold of
similarity, or the handling of 1 to n or n to n matchings, thus defining complex operations such as
split and merge.

Methods in this subcategory: (Hopcroft et al. 2004; Bourqui et al. 2009; Palla et al. 2007; Greene
et al. 2010; Rosvall and Bergstrom 2010; Takaffoli et al. 2011; Bota et al. 2011; Brodka et al. 2013;
Dhouioui and Akaichi 2014; [lhan and Ogidiicii 2015).

Refer to Appendix A.1 for a methods description.

4.1.2  lterative Core Nodes—Based Approaches. Methods in this subcategory identify one or sev-
eral special node(s) for each community—for instance those with the highest value of a centrality
measure—called core nodes. Two communities in adjacent time-steps containing the same core
node can subsequently be identified as part of the same dynamic community. It is thus possible to
identify splits or merge operations by using several core nodes for a single community.

Methods in this subcategory: Wang et al. (2008) and Chen et al. (2010).

Refer to Appendix A.2 for methods description.

4.1.3  Multistep Matching. Methods in this subcategory do not match communities only be-
tween adjacent timesteps. Conversely, they try to match them even in snapshots potentially far
apart in the network evolution. The matching itself can be done, as in other subcategories, using
a similarity measure or core nodes. The removal of the adjacency constraint allows to identify
resurgence operations—that is, a community existing at ¢ and ¢ + n but not between t + 1 and
t + (n—1). It can, however, increase the complexity of the matching algorithm, and on-the-fly
detection becomes inconsistent, as past affiliations can change.

Methods in this subcategory: Falkowski et al. (2006), Falkowski and Spiliopoulou (2007),
Goldberg et al. (2011), and Morini et al. (2017).

Refer to Appendix A.3 for a methods description.

4.2 Temporal Trade-Off Communities Discovery

Algorithms belonging to the Temporal Trade-off class process the evolution of the network it-
eratively. Moreover, unlike Instant Optimal approaches, they take into account the network and
the communities found in the previous step—or n-previous steps—to identify communities in the
current one. DCD algorithms falling in this category can be described by an iterative process:
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Fig. 6. Temporal Trade-off. After a bootstrap phase, communities are found iteratively at each step by ex-
ploiting information gathered from previous networks statuses and partitions. G, graph; P, partition; DC,
dynamic community; C, community.

(1) Initialization: Ffind communities for the initial state of the network.
(2) Update: For each incoming step, find communities at step t using graph at ¢t and past
information.

As for the Instant Optimal class, this template, exemplified in Figure 6, can be implemented by
several typologies of approaches. In the following, we discuss its advantages and drawbacks, and
the dynamic network models to which it can be applied.

Advantages. Temporal Trade-off approaches allow the ability to cope with the instability prob-
lem that affects Instant-optimal ones (see Section 3.2) while not diverging much from the usual
community detection definition (a partition is searched for at each step). Most methods of this
class take advantage of the existing community structure at step t — 1 to speed up the community
detection at ¢.

Drawbacks. In the general case, it is not possible to easily parallelize the community detection,
as each step needs the communities found at the previous ones as input. Another potential issue is
the long-term coherence of dynamic communities. Since at each iteration the identified partition
depends on previous ones, Temporal Trade-off approaches are subject to the risk of an avalanche
effect: communities can experience substantial drifts compared to what a static algorithm would
find on the static network corresponding to the state of the system at a given time.

Network models. This algorithmic schema has been used with both dynamic networks represen-
tations introduced in Section 2.1. When using temporal networks, only the incremental modifi-
cations of the network are considered to make the communities evolve, usually using local rules.
Conversely, when using network snapshots, a process is usually run on the whole graph, as for a
static algorithm, but taking into account past information.

Subcategories. The Temporal Trade-off template can be satisfied by very different algorithmic
approaches. Among them, we identified four subcategories.

The first two, namely update by global optimization and update by a set of rules, consist in up-
dating the partition found at the previous step, using global or local approaches.

The last two, namely informed CD by multiobjective optimization and informed CD network
smoothing, run a community detection from scratch for each snapshot while considering infor-
mation from previous steps.

4.2.1 Update by Global Optimization. A popular method for static CD is to optimize a global
quality function, such as modularity or conductance.
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This process is typically done using a heuristic (gradient descent, simulated annealing, etc.) that
iteratively merges and/or splits communities, and/or moves nodes from a community to another
until a local or global maximum is reached.

Methods in this subcategory use the partition existing at ¢ as a seed to initialize a global opti-
mization process at t + 1. The heuristic used can be the same as in the static case or a different
one. A typical example of a method in this category (Aynaud and Guillaume 2010) consists of using
the Louvain algorithm: in its original definition, at initialization, each node is in its community.
The partition update version of it consists of initializing Louvain with communities found in the
previous step.

Methods in this subcategory: Miller and Eliassi-Rad (2009), Gorke et al. (2010), Aynaud and
Guillaume (2010), Bansal et al. (2011), Shang et al. (2014), and Alvari et al. (2014).

Refer to Appendix B.1 for a methods description.

4.2.2  Update by a Set of Rules. Methods in this subcategory consider the list of network changes
(edge/node apparitions, vanishing) that occurred between the previous step and the current one,
and define a list of rules that determine how networks changes lead to communities update. Meth-
ods that follow such a rationale can vary significantly from one to the other.

Methods in this subcategory: Falkowski et al. (2008), Nguyen et al. (2011a), Cazabet et al. (2010),
Nguyen et al. (2011b), Cazabet and Amblard (2011), Agarwal et al. (2012), Duan et al. (2012), Gorke
etal. (2012), Ma and Huang (2013), Xie et al. (2013a), Lee et al. (2014), Zakrzewska and Bader (2015),
and Rossetti et al. (2017).

Refer to Appendix B.2 for a methods description.

4.2.3 Informed CD by Multiobjective Optimization. When addressing community detection on
snapshot graphs, two different aspects need to be evaluated for each snapshot: partition quality
and temporal partition coherence. The multiobjective optimization subclass groups together al-
gorithms that try to balance both of them at the same time so that a partition identified at time
t represents the natural evolution of the one identified at time ¢ — 1. This approach optimizes a
quality function of the following form:

c=aCS+(1-a)CT, (1)

where CS is the cost associated with the current snapshot (i.e., how well the community structure
fits the graph at time ¢) and CT is the smoothness with respect to the past history (i.e., how different
the actual community structure is with respect to the one at time t — 1) and a € [0, 1] is a correction
factor.

An instantiation of this type of optimization schema could be defined using modularity (New-
man and Girvan 2004) as CS and NMI (Lancichinetti et al. 2008) as CT as done in Folino and Pizzuti
(2010).

Methods in this subcategory: Zhou et al. (2007), Tang et al. (2008), Lin et al. (2008, 2009), Yang
et al. (2009), Folino and Pizzuti (2010), Sun et al. (2010), Gong et al. (2012), Kawadia and Sreenivasan
(2012), Crane and Dempsey (2015), and Gorke et al. (2013).

Refer to Appendix B.3 for a methods description.

4.2.4  Informed CD by Network Smoothing. Methods in this subcategory search for communities
at t by running a CD algorithm, not on the graph as it is at ¢ but on a version of it that is smoothed
according to the past evolution of the network, such as by adding weights to keep track of edges’
age. In a later step, communities are usually matched between snapshots, as in typical two-stage
approaches. Contrary to previous subcategories, it is not the previous communities that are used
to take the past into account but the previous state of the network.
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Fig. 7. Cross-Time. Communities are extracted by leveraging, all at once, the information gathered by the
complete temporally annotated history of the analyzed network. G, graph; P, partition; DC, dynamic com-
munity; C, community.

Methods in this subcategory: Kim and Han (2009), Guo et al. (2014), and Xu et al. (2013a).
Refer to Appendix B.4 for methods description.

4.3 Cross-Time Communities Discovery

Approaches belonging to the Cross-Time class do not consider independently the different steps
of the network evolution. On the contrary, DCD is done in a single process, considering—at the
same time—all states of the network. A visual representation of this class of approaches is shown
in Figure 7.

An example of algorithmic procedures that fall in this class is the following:

(1) Network transformation: From a sequence of snapshots, a single network is created in
which each metanode corresponds to the presence of a node at a given snapshot. Two
kinds of edges are defined on this network: (i) the usual relationship between nodes at the
same timestep and (ii) additional edges that link nodes belonging to different, adjacent
timesteps.

(2) Community detection: A static community detection algorithm is run on this transversal
network: identified communities contain nodes belonging to different timesteps, inter-
pretable as dynamic communities.

Advantages. This class of algorithms does not suffer from problems of instability and community
drift that affect previous ones.

In theory, these methods have more potential to deal with local anomalies and slow evolution
running through multiple steps, which iterative processes might not be able to perceive, due to
their narrower focus.

Drawbacks. Cross-Time approaches, unlike previous ones, are not based on the usual principle
of a unique partition being associated with each step of the graph evolution process. It therefore
requires developing novel techniques and making new assumptions on the nature of dynamic com-
munities. As a result, most methods suffer from constraints such as a fixed number of communities
and absence of operations such as merge or split.

Another drawback is that such approaches are not able to handle on-the-fly/real-time commu-
nity detection. Indeed, since their computation needs a complete knowledge of all network history,
in the presence of a new evolutive step the partition extraction needs to be performed from scratch.

Network models. Both network snapshots and temporal networks can be used by Cross-Time
approaches.
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Subcategories. All algorithms in the Cross-Time class do not have the same constraints on the
nature of searched communities. We can classify them into four categories: (i) fixed memberships,
fixed properties; (i) fixed memberships, evolving properties; (iii) evolving memberships, fixed proper-
ties; and (iiii) evolving memberships, evolving properties.

4.3.1 Fixed Memberships, Fixed Properties. Methods in this subcategory do not allow nodes to
switch communities, nor communities to appear or disappear. They also assume that communities
stay the same throughout the studied period. As a consequence, they search for the best partition,
on average, over a period of time. In most cases, they improve the solution by slicing the evolution
in several time periods, each of them considered homogeneous, and separated by dramatic changes
in the structure of the network, a problem related to change point detection (Peel and Clauset 2015).

Methods in this subcategory: Sun et al. (2007), Duan et al. (2009), and Aynaud and Guillaume
(2011).

Refer to Appendix C.1 for a methods description.

4.3.2  Fixed Memberships, Evolving Properties. Methods in this subcategory are aware that com-
munities are not homogeneous along time. For instance, nodes in a community can interact more
actively during some recurrent time periods (hours, days, weeks, etc.), or their activity might in-
crease or decrease along time. To each community—whose membership cannot change—they as-
sign a temporal profile corresponding to the evolution of its activity.

Methods in this subcategory: Gauvin et al. (2014) and Matias and Miele (2016).

Refer to Appendix C.2 for a methods description.

4.3.3 Evolving Memberships, Fixed Properties. Methods in this subcategory allow node mem-
berships to change along time—for instance, nodes can switch between communities. However,
because they use stochastic block model (SBM) approaches, for which the coevolution of mem-
berships and properties of communities is not possible (see Matias et al. (2015)), the number of
communities and their density is fixed for the whole period of analysis.

Methods in this subcategory: Yang et al. (2009, 2011), Ishiguro et al. (2010), Herlau et al. (2013),
Xu and Hero (2014), Matias et al. (2015), and Ghasemian et al. (2016).

Refer to Appendix C.3 for a methods description.

4.3.4  Evolving Memberships, Evolving Properties. Methods in this category do not impose con-
straints on how dynamic communities can evolve: nodes can switch between them, communities
can appear or disappear, and their density can change. Two main approaches are currently present
in this category:

—In Jdidia et al. (2007) and Mucha et al. (2010), edges are added between nodes in different
snapshots. Static community detection algorithms are consequently run on this transtem-
poral network

—In Viard et al. (2016) and Himmel et al. (2016), the authors search for persistent cliques of a
minimal size in link streams.

Methods in this subcategory: Jdidia et al. (2007), Mucha et al. (2010), Viard et al. (2016), and
Himmel et al. (2016).
Refer to Appendix C.4 for a methods description.

4.4 Discussion

As we have seen in this section, all three classes of approaches have advantages and drawbacks;
none is superior to the other. Nevertheless, we have observed how each one of them is more
suitable for some use cases.
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For instance, if the final goal is to provide on-the-fly community detection on a network that
will evolve in the future, approaches that fall in the first two classes represent the most suitable
fit. If the analytical context requires working with a fine temporal granularity, therefore modeling
the observed phenomena with temporal networks, it is strongly suggested to avoid methods of the
first class, which can only deal with snapshots.

The first layer of our taxonomy can thus be used to provide guidance and recommendations
on which approach (or class of approaches) to select given a specific problem formulation. For
instance, we can observe the following:

—How Instant Optimal approaches are the best choice when the final goal is to provide com-
munities that are as good as possible at each step of the evolution of the network

—How Cross-Time approaches are the best choice when the final goal is to provide commu-
nities that are coherent in time, particularly over the long term

—How Temporal Trade-off approaches represent a trade-off between these other two classes:
they are the best choice in the case of continuous monitoring, rapidly evolving data, and in
some cases limited memory applications.

The second layer of classification groups together approaches that share the same rationale.
This further classification is useful, in our opinion, to those researchers who need to frame their
method within a specific literature. In identifying the particular family to which a DCD approach
belongs, it is valuable to understand which are its real competitors and, doing so, to better organize
comparative analysis, reducing the bias introduced by the slightly different problems addressed (as
well as community definitions adopted) by alternative methods.

5 EVALUATION

So far, we have introduced our taxonomy and framed the DCD algorithms we identified within it.
In this section, we will address a very sensitive theme related to any data mining task: evaluation.
Indeed, finding a reliable way to evaluate partition quality is a significant issue to address while
approaching CD. One of the main issues of the CD lies in the absence of a unique definition of
community: each scholar follows its strategy to compare the results obtained by its algorithm with
those produced by other state-of-the-art methods, each one defining specific characteristics that a
proper network partition should express.

Often, the comparison is made among methods that have similar characteristics: algorithms
that optimize the same quality function (modularity, conductance, density, etc.) and produce over-
lapping/crisp/hierarchical network partitions, which are designed to work on directed/undirected
graphs, and so on. To shed some lights on the most popular evaluation strategies adopted in the
literature, in the following we categorize them and discuss testing environments used to evaluate
community partitions. In particular, in Section 5.1, we describe how synthetic network generators
are often used to design controlled experiments: there we introduce two classes of benchmarks
built upon them: static and dynamic ones. In Section 5.2, we discuss two families of approaches
designed to assess community quality: internal and external evaluation.

5.1 Synthetic Network Generators

Several network properties can be used to characterize real-world phenomena: network model-
ing aims to replicate them, thus allowing for the generation of synthetic datasets that, at least to
some extent, can be used as analytical proxies. The general aim of network modeling is to capture
some essential properties lying behind real-world phenomena and replicate them while generating
synthetic data, imposing only a few simple constraints.
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Several models of increasing complexity and realism were proposed during the 20th century,
the most famous being the random graphs of Rényi and Erdos (1959), the small-world networks of
Watts and Strogatz (1998), the preferencial attachment model of Barabasi and Albert (1999), Forest
Fire by Leskovec et al. (2005), and the community-affiliation graph (Yang and Leskovec 2014). For
a more detailed presentation of the history of network models, refer to Rossetti (2015).

Complex network modeling studies generated a new field of research: synthetic network gener-
ators. Generators allow scientists to evaluate their algorithms on synthetic data whose character-
istics resemble the ones that can be observed in real-world networks. The main reason behind the
adoption of network generators while analyzing the performance of a CD algorithm is the ability
to produce benchmark datasets that enable the following:

— Controlled environment testing: Network generators allow fine tuning of network charac-
teristics, such as network size and density. Such flexibility enables an extensive algorithm
evaluation on networks that have different characteristics but are generated to follow sim-
ilar topologies. Generators make it possible, given a CD algorithm, to evaluate:

— Stability: The performance of a CD approach can be evaluated on a high number of net-
work instances with similar properties to provide an estimate of the algorithmic stability.

— Scalability: Synthetic graphs can be used to test the actual scalability of an algorithm
while increasing the network size.

— Ground-truth testing: Some network generators provide as a by-product a ground-truth par-
tition of the generated network. Such a partition can be used to evaluate the one provided
by the tested algorithm.

Two families of network generators have been described to provide benchmarks for CD algo-
rithms: generators that produce static graphs-partitions and generators that describes dynamic
graphs-partitions. Surprisingly, the former are often used to evaluate DCD algorithms: this hap-
pens because they are more widespread than the latter and allows comparison with static algo-
rithms. Of course, they can only be used to evaluate the quality of the detection at time ¢ and not
the smoothness of communities.

Static benchmarks. The classic and most famous static benchmarks are the Girvan-Newman (GN,
introduced by Girvan and Newman (2002)) and the LFR (introduced by Lancichinetti et al. (2008)).
The GN benchmark is built upon the so-called planted l-partition model described in Condon and
Karp (2001), Brandes et al. (2003), and Gaertler et al. (2007). This generator takes as input a given
ground-truth partition (generated as as equally sized Erdos-Renyi random graphs (Rényi and Erdos
1959)) and two parameters respectively identifying the probabilities of intra- and interclusters
links. Planted I-partition models (also known as ad hoc models) were proposed to produce graphs
that have different characteristics: overlapping community structures (Sawardecker et al. 2009;
Danon et al. 2006), as well as weighted (Fan et al. 2007) and bipartite (Guimera et al. 2007) graphs,
were modeled to better mimic real network characteristics. A method to cope with the limitation of
the GN benchmark (Poisson degree distribution, equal community sizes), and to fill the gap among
Erdés-Rényi graphs and real ones, was introduced in Lancichinetti et al. (2008). The networks
generated by this model have both node degrees and community sizes following a power law
distribution. LFR has also been generalized to handle weighted and directed graphs, and to generate
overlapping communities (Lancichinetti and Fortunato 2009).

Dynamic benchmarks. A few works have proposed extensions of GN and LFR that introduce
topology dynamics as well as entirely new dynamic benchmarks.

In Lin et al. (2008), a variant of the GN model is introduced to evaluate the FaceNet framework.
There, the authors introduce network dynamics by generating different graph snapshots and
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interpolating from a snapshot to its subsequent by (i) randomly selecting a fixed number of nodes
from each community, (ii) removing them, and (iii) allocating them to different communities.

In Greene et al. (2010), a dynamic benchmark built upon LFR is introduced: starting from a static
synthetic graph with ground-truth communities, such benchmark randomly permuted 20% of the
node memberships to mimic node-community migrations.

In Granell et al. (2015), a new model based on SBMs is proposed: a graph is split into g subgraphs
where nodes belonging to the same subgraph are connected with probability p;,, whereas edges
connecting subgraphs have probability p,,;, and then an ad hoc procedure makes the network
evolve, generating community events. In Bazzi et al. (2016), a generic approach is proposed to
generate both multilayer and temporal networks with a community structure. The method adopts
a two-step process: (i) generating a multilayer partition satisfying user-defined parameters and
(ii) sampling edges consistent with the partition. The underlying model of edges and partition
is the degree-corrected SBM. An interlayer dependency tensor allows one to define how strongly
the community structure in one layer depends on other layers. In the case of dynamic networks,
the layer corresponding to time ¢ typically depends only on the network at time ¢ — 1. The model
does not support community events but provides an implementation in MATLAB.!

Finally, in Rossetti (2017), RDyn, a new benchmark specifically tailored for the DCD problem, is
introduced. RDyn? generates dynamic network topologies (both in SN and TN format) and tem-
porally evolving ground-truth communities.

5.2 Methodologies

Community partitions can be evaluated pursuing both external and internal quality analysis strate-
gies. The former methodologies assume the existence of an external ground truth that needs to
be retrieved or a specific partition quality score to optimize. The latter focus on the inspection
and description of topologies identified, and on the evaluation of the approach’s complexity and
scalability.

External: ground-truth communities. We have seen how GN and LFR were designed to produce
tunable network structures having ground-truth partitions. Moreover, several real-world datasets
also come with associated community annotations.®

Ground-truth community structures have well-known characteristics (fixed size, density, cut
ratio, etc.) and/or semantic coherence (i.e., node label homophily on a given external attribute). As
such, a way to evaluate the effectiveness of CD algorithms consists of comparing the divergence
between the partition they produce and the planted one. Although several criticisms were opposed
to this evaluation methodology (Peel et al. 2017) (e.g., since the CD is an ill-posed problem, it is not
assured that the planted partition is the optimal one for all quality functions optimized by existing
algorithms), it is still the most widely spread to compare different algorithmic approaches. The
common way to assess how a given partition resembles the ground-truth one is to compute the
NMI (Lancichinetti et al. 2008; McDaid et al. 2011; Lancichinetti et al. 2009) a measure of similarity
borrowed from information theory, defined in Rossetti et al. (2016):

H(X) + HY) - H(X,Y)
(HX)+H(Y))/2

where H(X) is the entropy of the random variable X associated to an identified community, H(Y)
is the entropy of the random variable Y associated to a ground-truth one, and H(X, Y) is the joint

NMI(X,Y) = )

Thttps://github.com/ MultilayerBenchmark/MultilayerBenchmark/.
2The RDyn code is available at https://goo.gl/WtLg4V.
3See https://snap.stanford.edu/data/index.html#communities.
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Fig. 8. F1-community measure scatter plot. Each point represents the (precision,recall) pairs for a given
match: the deeper the color, the more the communities share the same values of (precision,recall) values. The
optimal matching value is shown in the upper right corner (precision and recall equal to 1): communities with
high precision and low recall (bottom right corner) underestimate the ground-truth ones, and communities
with low precision and high recall (top left corner) overestimate the ground-truth ones.

entropy. NMI is defined in the interval [0,1] and is maximal when the compared communities are
identical. One drawback of NMI is that assuming an approximate size z for the compared commu-
nity sets, its computation requires O(z?) comparisons, a complexity that makes it often unusable
to evaluate partitions of large-scale networks. To cope with the high computational complexity of
this type of method in recent years, several approaches have been proposed (Cazabet et al. 2015;
Rossetti et al. 2016, 2017). As an example, in Rossetti et al. (2016) and Rossetti et al. (2017), the F1-
community score was introduced. In that work, the evaluation problem is solved as a classification
task:

—Network nodes are labeled according to their ground-truth community label.

—Each community identified by the tested algorithm is matched to the ground-truth one
whose label is shared by the majority of its nodes.

—Precision and recall are computed for each community by considering the actual nodes and
the real ones.

—The F1-community score is computed as the average of the harmonic mean of precision and
recall of the matched communities.

This approach (used in Rossetti (2017) and Rossetti et al. (2017), where a normalized version, NF1,*
is proposed to cope with community overlap and redundancy) requires O(z) to be computed (as-
suming an already labeled graph). Moreover, it allows graphical visualization of the performance of
a given algorithm via density scatter plots. As an example, Figure 8 shows a visual representation
of F1-community where the communities identified by a CD method are compared to ground-truth
ones.

Although real datasets with ground-truth communities, as well as the LFR/GN benchmarks, are
commonly used to perform testing of DCD approaches by considering the network at a partic-
ular instant of its evolution, it is mandatory to underline one huge deficiency: such methods do

4The NF1 code is available at http://goo.gl/kWIH2L
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not take into account the temporal dimension. In particular, GN and LFR were designed to allow
ground-truth testing for classical static CD algorithms. For this reason, their use in conjunction
with dynamic approaches raises several practical issues. How can subsequent (coherent) network
snapshots be generated? Is it possible to revise them to produce interaction networks? If so, how
can they reliably mimic edge/node vanishing? One of the open problems that afflicts DCD is, as of
today, the evaluation of the produced communities: how can time-aware ground-truth partitions
be defined (even in synthetic scenarios)? As discussed in Section 5.1, so far only a few approaches
have been designed to address these latter issues (e.g., RDyn (Rossetti 2017)).

External: quality function. In absence of ground-truth communities, a common way to compare
different algorithms is to rank their partitions with respect to a community quality score. The
algorithm that produces the partition reaching the highest score is then, by definition, considered
the best one for the analyzed network.

Modularity (Newman 2004; Newman and Girvan 2004) is probably the most widely used qual-
ity function. Values of Q approaching 1 indicate partitions with a strong community structure,
whereas values close to 0 indicate that the partition does not correspond to a community struc-
ture. Modularity has been used extensively both to evaluate and define CD algorithms for static and
dynamic networks. However, the legitimacy of modularity has been challenged in recent years. In
Fortunato and Barthélemy (2007), the authors prove that partitions of optimal modularity do not
necessarily correspond to what one expects of good communities; in particular, they introduced
the problem of “resolution limit,” which may prevent from detecting small communities in large
networks and vice versa.

Indeed, modularity is not the only measure used to evaluate partition quality. Among the most
used, we can recall the following:

—Conductance (Radicchi et al. 2004; Yang and Leskovec 2015) (i.e., the percentage of edges
that cross the cluster border)

—Expansion (Radicchi et al. 2004) (i.e., the number of edges that cross the community border)

—Internal density (Radicchi et al. 2004) (i.e., the ratio of edges within the cluster with respect
to all possible edges)

—Cut ratio and normalized cut (Fortunato 2010; Shi and Malik 2000) (i.e., the fraction of all
possible edges leaving the cluster)

—Maximum/average ODF (Flake et al. 2000) (out-degree fraction; i.e., the maximum/average
fraction of nodes’ edges crossing the cluster border)

—Flake ODF (Flake et al. 2000) (i.e., the fraction of nodes involved in fewer edges within the
community than outside it)

—Volume (i.e., the sum of degrees of nodes in the community)

—Edge cut (i.e., the number of edges that should be removed to destroy all paths connecting
the community to the rest of the network).

All of these indicators are used to get insights on the compactness and topological consistency
of communities. Studies about the relations between these quality functions can be found in Yang
and Leskovec (2015) and Creusefond et al. (2016). However, evaluating solutions based on a golden
quality function has a major drawback: it favors methods that are designed to maximize it. Even
though this type of strategy can be used fruitfully to compare methods that explicitly optimize a
specific measure, its application to approaches that search for communities with a different defi-
nition may produce misleading or inconclusive/irrelevant comparisons.

Internal. Several works overcome the issue of identifying a qualitative ranking among differ-
ent algorithms by proposing a quantitative evaluation: instead of comparing to a ground truth or
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computing quality measures, they focus on the algorithmic complexity (Tantipathananandh et al.
2007; Bourqui et al. 2009; Rossetti et al. 2017), running time (Li et al. 2011; Rossetti et al. 2017;
Gupta et al. 2012; Shao et al. 2014), scalability (Folino and Pizzuti 2014; Tan et al. 2014; Zakrzewska
and Bader 2015), or analysis enabled by their approaches (i.e., identification of specific life cycle
events (Palla et al. 2007; Cazabet et al. 2012; Lee et al. 2014)).

Internal evaluations, conversely from external ones, do not want to produce a direct compari-
son among different partitions: they assume that each algorithm is based on a different community
definition, and—after describing the structures that each approach generates—they measure quan-
titative performances and define a context of applicability for the proposed algorithm. Indeed, in-
ternal evaluation techniques are often used as support for external one, as in Agarwal et al. (2012),
Folino and Pizzuti (2014), and Rossetti et al. (2017). The need for an evaluation strategy alternative
to the external ones is primarily due to the intrinsic ill posedness of the treated problem.

As we discussed, CD in dynamic networks can be declined in several ways by imposing different
constraints on the network representation and its dynamics, as well as focusing the analytical goal
on different objectives. This heterogeneous and fascinating scenario makes the evaluation task
complex: unfortunately, so far, complete and accepted methodologies able to address it were not
presented, thus leaving researchers without a golden standard to follow.

6 APPLICATIONS

Up to this point, we have categorized existing DCD approaches, as well as the strategies adopted
to validate their results. In this section, we briefly discuss some related themes. In Section 6.1,
the main categories of real-world dynamic network datasets are described, whereas in Section 6.2,
visualization strategies for dynamic networks are introduced. Finally, in Section 6.3, examples of
how DCD can be used as an analytical tool are provided.

6.1 Real-World Dynamic Networks

The proliferation of online services, as well as the continuous collection of data regarding human
activities, has given birth in recent years to the so-called Big Data science. Indeed, almost all kinds
of human-generated content can be used to model graphs: online social networks, mobility traces,
information regarding collaborations or trade exchanges, and Web traffic are all examples of con-
texts in which it is possible to define relations among objects and design networks to analyze them.
Unfortunately, so far, only a few easily accessible online resources have been made available to re-
searchers to test dynamic network analytical tools. This situation is mostly due to the novelty of
this research field: whereas static network datasets of any size (often enriched by valuable semantic
annotations) have always been objects of analysis—and thus collected and catalogued—dynamic
ones are often small, not well organized, and rare. Nevertheless, DCD approaches are often tested
on these type of datasets to evaluate their performance and compare runtimes on real-world sce-
narios. In the following, we discuss the main online and offline sources used to extract dynamic
networks and provide a catalog of currently available datasets.

Collaboration networks. An extensively studied type of dynamic networks is the one that mod-
els work-related collaborations, such as coauthoring of scientific publications or movie creation.
Collaboration networks are extensively used by methods that work on snapshot graphs due to the
natural time scale they provide (each scientific paper has publication year, each movie a released
date). One drawback of networks built upon this type of data is their lack of adherence to classical
canons of real social networks: they are composed of interactions between groups more than activ-
ities between pairs of entities. Such a characteristic reflects into networks structures composed of
clique chains whose density is usually higher than what is expected in traditional social networks.
Table 1 reports the most used online resources.
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Table 1. Dynamic Collaboration Networks

Dataset URL Works
DBLP https://kdl.cs.umass.edu/ | Tang et al. (2008), Wang et al. (2008), Miller
display/public/DBLP and Eliassi-Rad (2009), Takaffoli et al. (2011),

Goldberg et al. (2011), and Ma and Huang
(2013)

cond-mat http://arxiv.org Wang et al. (2008)

cit-HepTh/Ph http://arxiv.org Shang et al. (2014), Gorke et al. (2013), and
flhan and Ogiidiicii (2015)

IMDB http://imdb.com Goldberg et al. (2011)

Table 2. Online/Offline Social Networks

Dataset URL Works
Twitter https://twitter.com Lee et al. (2014)
Delicious.com | https://del.icio.us Sun et al. (2010)

Online/offline social networks. The second class of sources often used to generate dynamic graphs
is provided by online/offline social contexts. This kind of data is characterized by a clear semantic
link: self-declared social relationships. These relationships can be considered as mutual (undirected
graph representation) or not necessarily so (directed graph representation). Social structures are
often analyzed in different snapshots, whose durations are defined by the analyst since there is no
natural temporal resolution to apply (as discussed in Sections 2 and 2.2). They can also be studied
as temporal networks of relations. Table 2 lists some online data sources used to test the algorithms
discussed in Section 4.

Communication networks. Data regarding communications (phone call logs, chats/emails, face-
to-face interactions, etc.) are often released with very precise timestamp annotations. Such fine-
grain temporal information makes it possible to build upon them not only snapshot graphs but
also temporal networks of interactions, or of relations using a chosen TTL. Those datasets, listed
in Table 3, are primarily used by partition update by a set of rules approaches (see Section 4.2).

Technological networks. The last class of networks widely adopted to test dynamic algorithms is
the technological one. Peer-to-peer networks, as well as graphs built on top of autonomous systems
routing information, are classical datasets, often used to validate even static CD approaches. Table 4
shows some examples of technological networks used in revised algorithms.

6.2 Visualization

Dynamic network visualization is a challenging task: so far, to the best of our knowledge, few
solutions have been proposed to visualize the evolution of communities. Effectively representing
community dynamics is difficult, as it needs to combine the challenges presented by both evolving
networks and communities visualization. For a survey on the visualization of dynamic networks,
please refer to Beck et al. (2017). For a survey on the visualization of community structures, please
refer to Vehlow et al. (2015b).

We can classify visualization methods in two categories: (i) dynamic visualizations, such as
videos, in which the state of communities at different timesteps is represented by independent
visualizations, and (ii) static drawings that summarize the whole network/communities evolution.
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Dataset URL Works
ENRON https://goo.gl/gQqo8l | Falkowski et al. (2008), Tang et al. (2008),
Wang et al. (2008), Folino and Pizzuti
(2010, 2014), Li et al. (2011), Shang et al.
(2014), and Ferry and Bumgarner (2012)
KIT https://goo.gl/oVrdb7 | Gorke et al. (2013)
Mobile phone — Folino and Pizzuti (2010, 2014), Gong
et al. (2012), and Guo et al. (2014)
Wiki-vote https://goo.gl/pzhst2 | Shang et al. (2014)
Senate/court voting | — Crane and Dempsey (2015)
Thiers http://goo.gl/jhAcY8 | Viard et al. (2016)
CAIDA http://goo.gl/72y9iT | Miller and Eliassi-Rad (2009)
Facebook http://goo.gl/8]J18cw | Rossetti et al. (2017)
Weibo http://goo.gl/bcoQiy | Rossetti et al. (2017)
Digg http://goo.gl/ybKQS2 | Zakrzewska and Bader (2015)
Slashdot http://goo.gl/FGgEIM | Zakrzewska and Bader (2015)
Table 4. Technological Networks
Dataset URL Works
AS routers https://goo.gl/tGk1l] | Gorke et al. (2013) and Alvari et al. (2014)
p2p-Gnutella | https://goo.gl/Tgl5NC | Ma and Huang (2013)

6.2.1 Dynamic Visualization. Methods falling in this category have been designed to represent
communities in static networks and have been extended to handle dynamic networks by the means
of animations. This adaptation usually consists of using a layout of nodes adapted to favor the
stability of their position despite the changes in their connectivity.

Frishman and Tal (2004) focus on minimizing the change of positions of each cluster as a whole,
and of the nodes within them. Invisible nodes representing communities are used to ensure the sta-
bility of community centroids. Communities are represented by node coloring and/or by drawing
a square around nodes belonging to the same group.

In Beir6 et al. (2010), the whole community is represented as a single node, whose size corre-
sponds to its number of components. Edges between communities represent all of the links that
connect their respective nodes. In Boyack et al. (2008), communities are shown as pie charts—a
visualization used to summarize some property of the nodes of which they are composed.

Hu et al. (2012) proposes to position nodes in the network based on a classic node positioning
layout and then overlay a shape on top of the nodes belonging to the same community, in a man-
ner appropriate for an easy understanding of the community structure, inspired by geographical
maps. In Lin et al. (2010), a similar approach is used, but a fuzzy contour map is used to represent
communities (Figure 9).

6.2.2 Static Visualization. In Mucha et al. (2010), a vertical position is attributed to each node,
according to its first apparition and its community affiliation, to put similar nodes close to each
other. The horizontal axis corresponds to time. A color is attributed to each community, and for
each timestamp, the node, if present, is represented by a dot colored according to the community
to which it belongs (Figure 10).
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Fig. 9. Visualization using contour map on top of nodes positioned with an appropriate layout (Lin et al.
2010). (Copyright 2010 Society for Industrial and Applied Mathematics. Reprinted with permission. All rights
reserved.)
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Fig. 10. Visualization used by Mucha et al. (2010).

In Reda et al. (2011), each community is represented as a fixed-width horizontal space and nodes
as colored lines that switch between them when community affiliation changes occur.

A similar idea is proposed in Rosvall and Bergstrom (2010). There, alluvial diagrams are used
to represent community evolution: each node is represented as a continuous line, whose vertical
position is determined by its community affiliation. Nodes belonging to the same community at a
given timestamp always appear next to each other and share the same color. Therefore, communi-
ties appear as horizontal strips whose width corresponds to the number of nodes that they contain.

The authors of Vehlow et al. (2015a) propose to combine views of the structure of the com-
munities with the alluvial representation. They employ a custom sorting of the communities and
vertices per timestep to minimize crossing and automatic color assignment methods to improve
readability (Figure 11).

The authors of Morini et al. (2015) use a variation of the alluvial diagram in which the verti-
cal position of communities is less constrained, facilitating the tracking of community life cycles
(Figure 12).

In Vehlow et al. (2016), a method is proposed to visualize both a hierarchical organization of
communities and their evolution through time. The method use matrices to represent each step,
and the relations between communities in different timesteps or different hierarchical levels are
represented by edges between the communities.

6.3 DCD as a Tool

Several articles (Agarwal et al. 2012; Lee et al. 2014; Cazabet et al. 2012) proposed using DCD
algorithms to identify events in online social networks. The general approach that they follow
consists of creating a dynamic network of keywords or n-grams, in which edges correspond to
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Fig. 12. Variation of the alluvial diagram to improve the readability of the life cycle of communities (Morini
et al. 2015).

a semantic relationship between terms observed in the studied OSN. The dynamic communities
found on such networks correspond to “popular events” aggregating similar bursting terms. The
evolution of groups of people in social media has also been addressed in Gliwa et al. (2012) and
Saganowski et al. (2015) on a Polish blogosphere service, Facebook, and DBLP.

DCD approaches could also be used as a tool for telecommunication networks. As such methods
allow keeping up-to-date information on the community structure in real time, they enable for the
adoption of algorithms able to extract knowledge from highly dynamical network substructures.
In Nguyen et al. (2011b), the authors propose using DCD for improving routing in mobile ad hoc
networks (MANETS), whereas in Nguyen et al. (2011a), the authors propose using them to contain
worms, notably by concentrating on the immunization of nodes at the interface between the in-
fected community and the rest of the network. In Schlitter and Falkowski (2009), the authors study
music listened to by a set of 1,800 users on the platform Last.fm over a period of 3 years. They de-
tect groups of users capturing specific music genres and study their evolution. For instance, they
observe the fusion between a group of users listening to progressive metal and another group
listening to death metal.

Scientific collaboration network analysis is a topic on which DCD algorithms have been applied
several times, notably in Cazabet et al. (2010), Lin et al. (2009), Van Nguyen et al. (2012), and Rosvall
and Bergstrom (2010). One of the most in-depth analyses can be found in Rosvall and Bergstrom
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(2010), where a merge between the fields of neurology, psychology, and some areas of molecular
and cell biology is identified, forming a new field of neuroscience between 2003 and 2005.

In Braun et al. (2015), DCD is used to study the reconfiguration of the brain network during
executive cognition in humans.

Finally, in Mucha et al. (2010), political affiliation among senators is studied based on vote simi-
larities. Known historical changes in U.S. politics are compared to communities of senators found
by a DCD algorithm. The same method has been applied for the United Nations General Assembly
(Macon et al. 2012), exploring different processes to construct the network from data.

7 OUTLOOK

Despite the significant amount of literature already published on the topic of DCD, numerous lines
of research remain open. The problem per se is not trivial: indeed, we have seen that it cannot be
reduced to simply running a static algorithm at several points in time.

As the scientific community is still tackling the problem of what is a good community, re-
searchers on DCD are confronted with the problem of defining what it means for a community
to persist and evolve. Moreover, they need to solve the apparent paradox that “optimal” partitions
found during different network evolution steps do not always form a coherent dynamic structure.

An underlying problem is due to the heterogeneous nature of the dynamic networks used by
different methods. Although snapshots and temporal networks have the same expressivity (i.e.,
both of them can be used to model the same network topology dynamics), they often have to
be considered differently in practice. Snapshots are often used when the network varies greatly
between subsequent observations, whereas temporal networks represent a fine-grain evolution.
As a consequence, a method designed for one of these approaches often solves a different problem
than one designed for the other.

The classification that we have adopted highlights the amazing variety of approaches adopted
by different authors. Such DCD methodologies not only propose different ways of solving the same
problem but also explore different definitions of what a dynamic community is, and how to find
network partitions that are both coherent in the long run and meaningful at given points in time.

Despite this variety of definitions and approaches, common grounds have begun to emerge,
particularly regarding the definition of events or operations.

What we believe the field lacks the most is a common ground to evaluate and compare the
different methods among themselves. Indeed, the earliest methods for community detection have
compared themselves to the Zachary Karate Club, although there is no such widespread toy model
for dynamic networks.

More importantly, the field of CD has been structured by the introduction of advanced bench-
mark and systematic, quantitative comparison of algorithms. Although a few steps have been taken
in this direction, by introducing simplistic synthetic benchmarks, there is still no universally rec-
ognized benchmark equivalent to the LFR for the dynamic case, and no systematic comparison of
methods has been conducted yet. The problem is indeed arduous: to compare methods and their
results, it is mandatory to provide to each method an appropriate input and convert outputs to
comparable pieces of information. Indeed, the problem is not only a technical one: it involves the
lack of standard formal definitions. How to compare methods working on a few snapshots and
methods on temporal networks? How to compare results that do not share the same possible op-
erations of communities? And how to design a benchmark that generates realistic evolution of
communities when such evolution is not well known yet?

A question many will ask is this: what method should I use for my data? Unfortunately, there is
no final answer to this question, particularly due to the lack of systematic evaluation. Nevertheless,
the classification of methods according to their characteristics already gives us some hints. A first

ACM Computing Surveys, Vol. 51, No. 2, Article 35. Publication date: February 2018.



Community Discovery in Dynamic Networks: A Survey 35:31

aspect to consider is the number of steps of evolution present in the original data. If there are
few steps (i.e., less than 10), typically corresponding to aggregated observations over months or
years, the snapshot representation is usually the most suitable. If the number of steps is high (in
the thousands or more), methods using temporal networks are more appropriate. Another aspect
is the priority given to the quality of communities found at a particular instant rather than to the
coherence of the continuity of communities. For instance, a tool using DCD to improve the routing
in a point-to-point network in real time might give higher importance to the current state of the
network. Conversely, a retrospective analysis of past events aimed at interpreting the emergence
of scientific fields by clustering journals or other works should favor the long-term coherence of
communities.

Finally, we observed that despite a large number of methods proposed, few applications of DCD
to concrete problems were proposed—except the ones by the authors themselves. As of today, it
seems that the field lacks a visibility and that authors who need a DCD method tend to develop
their own, ad hoc algorithm, often without considering existing ones. We believe that the future
of the field will rely on its greater cohesion and ease of access for newcomers to reach an audience
as large as conventional CD.
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