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Abstract. Everyday, ideas, information as well as viruses spread over
complex social tissues described by our interpersonal relations. So far, the
network contexts upon which diffusive phenomena unfold have usually
considered static, composed by a fixed set of nodes and edges. Recent
studies describe social networks as rapidly changing topologies in which
interactions are bursty and node presence is not stable. In this work –
following a data-driven approach – we compare the behaviors of classical
spreading models when used to analyze a same social network whose
topological dynamics are observed at different temporal-granularities.
Our goal is to shed some light on the impacts that the adoption of a
static topology has on spreading simulations as well as to provide an
alternative, dynamic-aware, formulation of two classical diffusion models.
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1 Introduction

Since the last decade we are accustomed to living two lives at the same time: one
offline and one online. Indeed, one of the most immediate facilities the WWW
has granted us is the dismantle of physical distances, thus impacting the way
diffusive phenomena evolve.

In the real world, we are used discussing the spread of viruses, such as in-
fluenza, or diseases, passive contagion processes that do not require active agents
to unfold. The diffusion of ideas, conversely, is an example of active process: each
individual can choose to adopt a new idea or not, to advertise it or not. When we
move to the online world we can experience both passive diffusions as well as ac-
tive ones. Diffusion processes occur on top of social structures that, so far, have
been often considered static in analytical studies. However, both passive and
active processes require a direct contact for a content to spread from an already
infected person to a susceptible one. Social interactions have a limited duration
so that they dynamically shape the topology of our social graph – indeed, we
are not constantly in contact with all our friends.

In this work, we tackle the problem of understanding if, and how, dynamic
network topology affects the diffusion of information. Is a static social network



representation enough to correctly simulate information spreading? Must topol-
ogy dynamics be taken into account in order to better understand the real dif-
fusive phenomena?

2 Related Works

In order to better approach the analysis of diffusive phenomena on time evolving
social graphs two different, yet related, topics need to be reviewed and discussed:
information spreading and dynamic social networks analysis.
Information Spreading. Commonly, when we use the word “spreading” we
think to contagious diseases caused by biological pathogens, like influenza, measles
or sexually transmitted diseases. However, a plethora of phenomena can be linked
to the concept of epidemic: think about the spread of computer viruses [1], or
the spread of mobile phone virus [2,3], or the diffusion of knowledge, innovations,
products in an online social network [4]. In this paper, we focus on the diffusion
of a particular content: innovations/ideas. The diffusion of innovation theory was
developed by Rogers in 1962 [5]: it aims to explain how an idea or product gains
momentum and diffuses through a specific population or social system. Rogers
found that people who adopt an innovation early have different characteristics
than people who adopt an innovation later.

Although often treated as similar processes diffusion of information and epi-
demic spreading can be easily distinguished by a single feature: the degree of
activeness of the subjects they affect.
Dynamic Social Networks. Since its beginning, complex network analysis
has been approached by researchers through the definition of specific mining
problems. Among them community discovery [6], link-based object ranking [7],
frequent pattern mining [8] are only examples of analytical tasks originally de-
fined on networks “frozen in time”.

However, with the explosion of human-generated data, time has started rep-
resenting a non-negligible entity. During the last decade, several works have tried
to cope with such important dimension providing novel interpretations of known
problems, porting them from static networks to temporal networks: motifs min-
ing [9], Link prediction [10], community discovery [11] are only few examples.

Indeed, it has been shown that networks inferred from social ties can be
used to observe, characterize and forecast different aspects of human activities
and that, in order to correctly describe social phenomena, it is mandatory to
consider different granularity of temporal abstraction [12]. Once understood the
importance of ties dynamics for the overall network topology it becomes natural
to study how they affect spreading phenomena.
Spreading on Dynamic Networks. Information spreading on social networks
has always produced a considerable attention from various disciplines. Most of
the works on such subject mainly focus on studying the effect of diffusion pro-
cesses on static networks, but as we already discussed, the structure of social
networks continuously change as time goes by. Recently, the analysis of diffu-
sive processes in dynamic networks has started to capture the attention of the



research community, such as in [13] where the authors used a SI-type spreading
process or in in [14] where they used the SIR model in dynamic contests

One of the few investigations of how dynamic networks affects the spread
of information is found in [15] where features of time-varying social networks
are measured empirically using a dataset of phone calls. In [16] the authors
investigated empirically link formation mechanisms that are driven by the infor-
mation generating behavior of individuals. One common theme of investigation
relates network topology evolution as response to spreading processes. In [17]
the authors applied Independent Cascade Model and Linear Threshold Model
on Twitter showing that their lack in capturing diffusion in dynamic contexts.
Finally, in [18] a data driven study similar to ours was performed. However due
to the short timespan of the analyzed data, the authors was forced to synthesize
network topology evolution thus making impossible to observe the impact of
characteristic phenomenon events on the diffusive process.

3 Problem definition

In this work, we tackle a particular typology of network spreading: the diffusion of
innovation. Innovation diffusion is a term often used to describe an active process:
each agent autonomously decide to adopt/publicize a given behavior/idea, the
sole exposition to it is not sufficient to get infected. Our analysis will be focused
on answering the following questions:

Q1: can analyzing spreading phenomena on a static social graph lead to an over-
estimate of the real volume of its diffusion?

Q2: do the choices made to keep track of topology dynamics impact the speed
of diffusive processes?

Q3: is it safe to assume that spreading phenomena on a dynamic network topol-
ogy unfold at a constant rate? Do the variations, as the diffusion progresses,
of the number of nodes/edges impact the overall diffusion process?

To address such questions, we define three scenarios each capturing a different
temporal granularity of topology evolution and observe their inpact on the evo-
lution of spreading phenomena. To do so, we model a network as an undirected
graph denoted as G = (V,E), where V is the set of the nodes and E is a set
of interactions (edges), i.e., a set of triple (u, v, t) where u, v ∈ V are nodes and
t ∈ N identify the time at which an interaction occurs between nodes u to v.
Since we will analyze dynamic social interaction graphs we allow the presence of
multiple interactions among the same pair of nodes. Moreover, in the following,
we will denote with Etj the set of interactions that appears in the graph at time
tj . We can formalize the problem in the following way:

Definition 1 (Spreading problem). Given a network G = (V,E) observed
for k consecutive snapshots (i.e., ∀(u, v, t), t ∈ {t1, t2, ..., tk}), a diffusion model
D, and a set It0 = {n1, n2, ..., nj} ⊆ V identifying the initial infected nodes we
define the result of D(G, It0) as the ordered sequence I = {It1 , . . . , Itk} of the
nodes infected during each network snapshot.



The scenarios we will analyze in our data-driven investigation are:

- S1 – Static topology. In this first scenario for each time ti with i = 1, ..., k,
we applied D to the full network G = (V,E) using as infected node set
at time ti the result of D(G, Iti−1

). In this case the set of edges will be
E = Et1 ∪ Et2 ∪ ... ∪ Etk .

- S2 – Snapshot Evolution. In this second scenario for each time ti with i =
1, ..., k we compute D(Gti , Iti−1

) where Gti = (V,Eti).
- S3 – Interaction Dynamics. In this last scenario for each time ti with i =

1, ..., k we apply D incrementally to the ordered stream of interaction in Eti .

The difference between S2 and S3 lies in the temporal granularity used to track
topology dynamics. To better understand how they differ let us consider as
graph snapshot unit a single day. In S1 a network will be built flattening all
the interactions occurred during the observed time span in a single one, thus
describing dynamic phenomena with a static structure. In S2 a network will
be built for each day and the spreading process computed on each one of them
starting, incrementally, from the previous infection status. Finally, in S3 all the
interactions among nodes that occur during each day will be analyzed in their
natural, temporal, ordering: no network will be explicitly built, the spreading
process will be simulated considering only a single one-to-one contact at a time.

4 Data Driven Study

To address our research questions, we carried out a data-driven investigation
involving two interaction graphs. In particular, we used the following datasets:
WEIBO3: this dataset is built upon the logs of the popular Chinese micro-blog
service WEIBO4. An interaction represents a direct message from two users. We
selected the first 90 days from the year 2011.
Facebook: the FB07 network is a sample of the WOSN2009 [19] dataset and
describes online interactions between Facebook users during 2007.
In Table 1 are reported the main statistics of the networks.

On such datasets, we simulated two classical compartmental models SI and
SIR detailed in 4.1. For each scenarios, in 4.2 we compared the diffusion trends
obtained while varying network dynamic and the model’s parameters; in 5 we
discuss our results and underline their relations with the topology dynamic.

4.1 Diffusion models

To understand how network dynamics impact spreading processes, we focus our
attention on two well-known compartmental models: SI and SIR. These models
were chosen to describe two slightly different information diffusion scenarios:
D1 – Continuous advertising: after having adopted an idea/innovation an

3 http://www.wise2012.cs.ucy.ac.cy/challenge.html
4 http://weibo.com



Network Nodes Interactions Edges CC #Observation

WEIBO 1 656 615 6 759 012 3 394 566 152 90 days
FB07 19 561 304 392 67 077 13 365 days

Table 1. Base statistics of the analyzed interaction graphs. CC identifies the number
of connected components.

agent continue to advertise it to its neighbors during each interaction;
D2 – Diminishing advertising: after having adopted an idea/innovation an
agent can decide to stop advertising it to its neighbors.
Since both models have been described for complete networks and static graphs,
we will describe the modifications to apply them to the S2 and S3 scenarios.

SI: this epidemic model was introduced in 1927 by Kermack [20]. During the
epidemics an individual can belong to two stages, infected (I) and susceptible
(S): we adopt SI to simulate diffusion scenario D1. SI assumes that if a sus-
ceptible node comes into contact with an infected one, it becomes infected with
probability β. The model can be described by the transition rule S → I, where
the arrow indicates that once an individual becomes infected, it stays infected.

S1: Static network. In this scenario, the temporal dimension is collapsed into
a single static network composed of all the nodes and interactions in that appear
in the dataset. As a first step, an initial set of nodes are considered infected and
thus assigned to the I set while the others belong to the susceptible set S. For
every day ti, with i = 1, ..., k, each node u ∈ V having at least an infected
neighbor is evaluated in order to decide if it will become infected or not. SI sets
the probability of infection for a node having n infected neighbors as nβ: the
more the infected neighbors a node has the higher its chance to join the I set.

S2: Snapshot-based evolution. To adapt the classical formulation to the snap-
shot based topology evolution we updated the network structure during each
iteration. The model applied at day ti will then use as starting infected set Iti−1 ,
the result of the iteration performed on the interaction graph of the day ti−1,
and as social structure the current one. Such choice implies that not only the
interactions of consecutive snapshot could vary but that the node sets can also
differ. Naturally, the nodes not present during the snapshot ti not take part to
the diffusion process at time ti; they can’t infect the neighbors, and they can’t
change their status. In this scenario the probability of infection for a node u is
computed not as nβ with n the number of total infected neighbors, but as ntiβ
with nti ≤ n restricting the set of infected neighbors to the ones that are present
at time ti.

S3: Interaction-based evolution. In this dynamic scenario, the network struc-
ture falls apart, being substituted by a stream of instantaneous interactions. We
can imagine such scenario as a word of mouth spreading phenomena in which an
idea or a behavior can be shared/adopted only through a direct contact. To sim-
ulate such behavior during each single interaction with an infected node an actor
decides to adopt the idea/innovation or not with probability β. We implement



Algorithm 1 Interaction-based SI
Require: It0 : set of initial infected node

1: for each ti in {1,...,k} do
2: Iti = Iti−1

3: for each interation (u, v, ti) in Eti
do

4: if v in Iti−1
then

5: p = rand(0, 1) . Random value in [0,1]
6: if β > p then
7: add u to Iti
8: end if
9: end if
10: end for
11: yield Iti . Return daily status

12: end for

streaming SI as shown in Algorithm 1. In this model an actor u involved into
m interactions with infected nodes during the day ti has a probability of infec-
tion during such day equal to

∑m
i=1 β due to the independence of the m contacts.

SIR: this model represents a variation of the previous one. Each node belongs
to three stages during the epidemics: the state infected I, the susceptible state
S and the removed stage R, describing actors that successfully recovered from
the infection. We adopt SIR to simulate diffusion scenario D2. The model can
be described by the transition rule S → I → R, where the arrow indicates that
once an individual becomes infected it can only change its status to removed.

S1: Static network. As for SI in the S1 scenario, we applied the classical for-
mulation of the model on the flattened static graph. In SIR the idea/innovation
is adopted with a nβ probability. Moreover, during each iteration, the probability
that an infected node decides to stop advertising to its neighbors the previously
adopted idea/innovation – thus joining the R set – is γ.

S2-S3: Dynamic networks. In order to comply with the topology dynamics
described by S2 and S3, we adopted the SIR model the same rationales used
for SI. We omit the pseudocode for the interaction-based version of SIR since
it differs from the one reported in Algorithm 1 solely for the evaluation of the
removal probability γ (which is performed on daily iteration basis one time for
each node having at least one interaction during such time frame).

4.2 Diffusion Analysis

To extensively compare the diffusion scenarios described by D1 and D2 while
varying their level of topology dynamic we organized our simulations as follow:

i. for each dataset we randomly selected 10 disjoint sets of nodes each one
covering 5% of the V : such sets identify, for each scenario and model, 10
different initial infection starting points, e.g., It0 ;

ii. for each dataset, scenario and initially infected status we executed the SI
and SIR models while setting their parameters;

iii. we build the infection trend over the observed period for each scenario,
model, initially parameter configuration and dataset as the iteration wise
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Fig. 1. Simulation of SI models on both WEIBO and FB07: the curve represent the
average percentage of infected nodes over time while varying the model parameter. Due
to the number of connected components (as shown in Table 1), the number of infected
nodes never reaches the 100%.

average of the runs over the 10 executions performed varying the initially
infected nodes.

D1 - Continuous advertising. Figure 1 shows the results obtained by the
simulation of the SI model on the two datasets while varying both the value of
the β parameter and the topology dynamicity.

Scenario S1. The diffusion process on the complete, static, graph results in
a sharp increase in the percentage of infected nodes even for low values of β.
In WEIBO, Figure 1(a), setting β = 0, 01 leads at the end of the simulation to
an epidemic state covering almost 70% of the nodes in the network (half of the
population is infected after the first 40 iterations). While increasing the values
of the infection parameter a significative speed up in the diffusion process allows
reaching almost the 80% of the nodes, after only 15-20 iterations. In FB07, Figure
1(d), the impact of β on the diffusion trend is more evident: a slight increase
from a value of 0.01 to 0.05 almost double the number of nodes infected after
the first 50 iterations leading to a complete saturation within the 4th month.

Scenario S2. Considering during each step the network built over the inter-
actions established during a single day leads to a significative reduction of the
diffusion speed. In both WEIBO and FB07 the infection trends do not reach sat-
uration. Observing the FB07 trend, Figure 1(e), we note that only for β = 0.5 we
are able to reach a final percentage of infected nodes “comparable” to the lowest
one obtained by the same model on the static scenario: 50 times the β-value of
the “worst” performing SI model in S1. In WEIBO, Figure 1(b), the pattern



0 10 20 30 40 50 60 70 80
Days

0.0

0.1

0.2

0.3

0.4

0.5
N

o
d
e
s 

In
fe

ct
e
d

γ= 0. 01

γ= 0. 05

γ= 0. 1

γ= 0. 15

γ= 0. 20

γ= 0. 25

(a) WEIBO - S1 - β = 0, 01

0 10 20 30 40 50 60 70 80
Days

0.0

0.1

0.2

0.3

0.4

0.5

N
o
d
e
s 

In
fe

ct
e
d

γ= 0. 01

γ= 0. 05

γ= 0. 1

γ= 0. 15

γ= 0. 2

γ= 0. 25

(b) WEIBO - S2 - β = 0, 5
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Fig. 2. Simulation of SIR models on both WEIBO and FB07: the curve represent the
average percentage of infected nodes over time while varying the model parameters.

is similar although even considering β = 0.5 no more than 50% of the overall
nodes become infected after 90 days, 20% less than using β = 0.01 in S1.

Scenario S3. Moving to the interaction-based evolution we observe a behavior
similar to the one identified in S2; however, in this scenario the infection trends
grow always faster than the ones having the same β value in the S2 scenario (on
average 5 − 10% on both WEIBO and FB07, as shown in Figure 1(c-f)). Such
speed up is due to the different way the probability of infection is calculated
in the two scenarios. Where given the interactions occurred during a day ti, in
S2 a node having n infected neighbors is subject to a nβ probability of being
infected, in S3 the probability equals to

∑m
i=1 β (where m ≥ n since during the

same day multiple interactions can occur among the same pair of nodes).
D2 - Diminishing advertising. Figure 2 shows the results obtained by the

simulation of the SIR model on the two datasets while varying both the value
of the β and γ parameters and the topology dynamicity.

Scenario S1. In the simulation with SI model, we observed that the final reach
in the three different scenarios are comparable only selecting different values of
β. In particular the diffusion reached in S1 with β = 0.01 is, almost, reachable
in S2 and S3 when β = 0.5: for this reason, we chose to instantiate SIR on the
static networks built upon our datasets by fixing β = 0.01 and varying only the γ
parameter value. In both WEIBO and FB07 we observe, Figure 2(a-d), the classic
decay experienced by the infection trend in a SIR model. With lower values of γ
(i.e., γ = 0.01) we found a rapidly grow in the first observation period (around
50 days in FB07) followed that a rapidly decreased. Such two-phase trend is
expected when β ≤ γ: at first the susceptible nodes start to become infected
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Fig. 3. WEIBO statistics: (a) distribution of node degrees and interactions, (b) distri-
bution of nodes’ activity, (c) distribution of delay among consecutive interactions of a
same user, (d) connected components trend and delta infection trend in SI (e) and SIR
(f). In (e) and (f) the trends compare models having the following parameter settings
- SI: S1 β = 0.01, S2-S3 β = 0.5; SIR: S1 β = 0.01 γ = 0.01, S2-S3: β = 0.5 γ = 0.01

leading to an increase in the trend, then infected nodes are gradually removed
and stop their spreading activity causing, on the long run, the disease to die out.
For γ >> β the growing phase is likely to not be present since all the initial
infected nodes are more likely to being removed than to spread the infection
(e.g., in Figure 2(a-d) the trends having γ ∈ [0.15− 0.25]).

Scenarios S2-S3. In Figure 2(b-c-e-f) we report for S2 and S3 the infection
trends for β = 0.5 (other values of β behaving alike). Similar to what happened
in S1, for values of γ comparable to the β ones the trend curves steadily die out.
However, the velocity of both infection and recovery diffusions are extremely
lower w.r.t. the ones observed in S1. Even setting a β-value equals to 50 times
the one used in S1 we can compare to the diffusion peaks of such scenarios
(almost 36% in FB07 and 39% in WEIBO reached respectively on the 60th and
50th simulation days) only after a longer simulation period (at the 200th and
160th days in FB07 for S2 and S3 respectively, at the 69th and 90th days in
WEIBO for S2 and S3 respectively).

5 Discussion

We have observed how the introduction of topology dynamics impacts two dif-
ferent spreading phenomena definitions. Indeed our results suggest that the par-
ticular characteristics possessed by a dynamic system deeply affect the way a
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Fig. 4. (a) Daily trends in the WEIBO dataset. The peak on the 34th day capture the
increase of contacts and presences happened during the Chinese New Year. (b) Daily
trend of nodes and edges in the FB07 dataset. (a-b) Vertical lines identify Sundays.

word of mouth diffusion of an idea/innovation will spread. We now focus to bet-
ter understand how the topology expressed by the adopted data sources work to
favor/against the simulated diffusion processes. Figure 3 shows some distribu-
tions computed on the WEIBO dataset (FB07 behaving alike). In Figure 3(a)
we observe the degree and interaction distributions describing respectively the
“flattened” overall connectivity and the real interaction one. Both distributions
are heavy tailed: however, the interaction one is heavier, meaning that, on aver-
age, active nodes tend to exploit multiple times their connections. As we have
discussed in 4.2, in a dynamic topology a node is not necessarily present dur-
ing all the observed snapshots: in Figure 3(b) is reported the distribution of
active days per user. We can observe that only a few hundreds of nodes (less
than the 1%) are active for all the observed 90 days, while the majority of users
interacts only during 3-4 days. Moreover, as shown in Figure 3(c) the average
interval between two consecutive interactions of the same user (disregarding the
endpoint) is likely to be low: users seem to concentrate their service usage for
short-bounded time frames. Such contact patterns affect the overall connectiv-
ity of the graph: as shown in Figure 3(d) the number of connected components
highly vary as time goes by. Conversely, as highlighted in Table 1, considering
an aggregate view of the network we get only 152 components (one of them
composed by 98% of the nodes). In Figure 4(a) are shown the patterns of daily
interactions and node presences of the WEIBO interaction network. Such trends
show an overall increase of the number of interactions and nodes, day after day.
In such plot, we identify the Sundays with vertical lines: the WEIBO users tend
to diminish their presence (and usage) of the service during the weekends. More-
over, we can also observe a sharp peak in the number of interactions and nodes
on the 34th day of our sample: such day, 3 February 2011, identified the Chi-
nese New Year. If we examine the 34th day of the WEIBO diffusion trends for
the SI and SIR models, shown respectively in Figures 1(a-b-c) and 2(a-b-c),



we can notice a peculiarity: in both S2 and S3, for all the tested parameters, a
“small” jump highlight a sudden increase in the infected nodes while in S1 such
behavior is not present. Therefore, adopting a flattened graph as done in S1, not
only we get an overestimate of the percentage of infected nodes but also we do
not capture the presence of special events. Such observations are confirmed by
the prevalence plots shown in Figure 3(e-f) where are reported for each day the
number of novel infected nodes for SI and SIR respectively. Even in the case of
diminishing advertising, SIR we are still able to identify Chinese New Year day
in both S2 and S3 even if the diffusion rate appears to be almost uniform.
The same analysis performed on the FB07 dataset is shown in Figure 4(b). The
interactions and node presences trends are similar the one observed in WEIBO,
however, the temporal pattern is shifted: Facebook users, are more active during
the weekends. Another difference is the absence of a single day that generates a
dominant peak in the observed trends. Such absence could be due to the limited
number of users observed during the 365 days.

Once compared the diffusion trends in the three identified scenarios we can
now provide answers to the research questions raised in Section 3:

A1: Yes, reducing the dynamic unfolding of a social interaction phenomena to
an aggregate, static, snapshot necessarily lead to an overestimate of the real
network connectivity and, as a consequence, of all the diffusion processes
that on such topology take place.

A2: Yes, different temporal granularities for topology dynamics aggregation (e.g.,
snapshots and interactions) - at least for the analyzed diffusion models -
cause different spreading velocity. Such result is primarily due to the specific
choices that need to be made to adapt diffusive models to the available
dynamic structure. Both SI and SIR were originally defined for complete
network topology then adapted to general static networks. We introduced a
novel reinterpretation in which the topology changes at each step (S2) and
another one in which the network topology is completely absent (S3).

A3: No, peculiar topology evolution patterns or the chosen diffusion model deeply
affect the rate of infection. In particular, cyclic patterns (weekend/weekdays)
or special events (e.g., the Chinese New Year) have shown to deeply charac-
terize the rate at which diffusion occurs in SI, while the former loses their
relevance if a SIR model is applied.

6 Conclusions

In this work, we analyzed diffusive phenomena on dynamic social interaction
graphs. Moving from the observation that studying how information spread in
a static social context could lead to inconsistent results, we performed a data-
driven study aimed to underline the real impact of network dynamics. After
having modeled three different evolutive scenarios, we studied their impact on
the outcome produced by classical compartmental models (SI and SIR), models
we redefined to handle topology dynamics5. Our results show that analyzing

5 All methods were made available within the ndlib library: https://goo.gl/1tstvG.

https://goo.gl/1tstvG


diffusive phenomena not considering topology dynamic lead to relevant over
estimate of the real speed and amplitude of the spreading. Moreover, dynamic-
aware approaches enables the identification of context-dependent events as well
as activity patterns that may severely affect diffusion dynamics.

As future work, we plan to study the other side of the problem, namely the
impact diffusive processes have on network topology. Finally, another research
theme remains open: the definition of novel analytical diffusion frameworks tai-
lored to integrate the competing dynamic processes on and of networks.
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12. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep 519(3) (2012)
13. Gulyás, L., Kampis, G.: Spreading processes on dynamically changing contact

networks. EPJ ST 222(6) (2013)
14. Liu, C., Zhang, Z.K.: Information spreading on dynamic social networks. Commun

Nonlinear Sci Numer Simul 19(4) (2014)
15. Miritello, G., Moro, E., Lara, R.: Dynamical strength of social ties in information

spreading. Physical Review E 83(4) (2011)
16. Weng, L., Ratkiewicz, J., Perra, N., Gonçalves, B., Castillo, C., Bonchi, F., Schi-
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