
NDLIB: Studying Network Diffusion Dynamics

Giulio Rossetti∗†, Letizia Milli∗†, Salvatore Rinzivillo†, Alina Sirbu∗, Dino Pedreschi∗ and Fosca Giannotti†
∗ University of Pisa,

Largo Bruno Pontecorvo, 2 Pisa, Italy

Email: name.surname@di.unipi.it
† KDD Lab. ISTI-CNR,

via G. Moruzzi, 1 Pisa, Italy

Email:name.surname@isti.cnr.it

Abstract—Nowadays the analysis of diffusive phenomena oc-
curring on top of complex networks represents a hot topic in
the Social Network Analysis playground. In order to support
students, teachers, developers and researchers in this work we
introduce a novel simulation framework, NDLIB. NDLIB is
designed to be a multi-level ecosystem that can be fruitfully
used by different user segments. Upon the diffusion library,
we designed a simulation server that allows remote execution
of experiments and an online visualization tool that abstract
the programmatic interface and makes available the simulation
platform to non-technicians.

I. INTRODUCTION

In the last decades Social Network Analysis, henceforth

SNA, has received increasing attention from several, hetero-

geneous fields of research. Such popularity was certainly due

to the flexibility offered by graph theory: a powerful tool that

allows reducing countless phenomena to a common analytical

framework whose basic bricks are nodes and their relations.

Indeed, social relationships, trading, transportation and com-

munication infrastructures, even the brain can be modeled as

networks and, as such, analyzed. Undoubtedly, such pervasive-

ness has produced an amplification in the visibility of network

analysis studies thus making this complex and interesting field

one of the most widespread among higher education centers,

universities and academies. Given the exponential diffusion

reached by SNA, several tools were developed in order to

make it approachable by the wider audience possible. SNA

programming libraries are nowadays available to computer

scientists, physicists as well as mathematicians; moreover,

graphical tools were developed for social scientists, biologists

as well as for educational purposes.

Although being a very active field of research per se, SNA

is often used as a tool to analyze complex phenomena such as

spreading of epidemic and diffusion of opinions, ideas, innova-

tions. Even for such peculiar applications, we have witnessed

during the last years the appearance of dedicated tools and

libraries: however, the plethora of resources available often

discourage the final users making hard and time-consuming

the identification of the right tool for the specific task and

level of expertise.

To cope with such issue, in this work we introduce a

novel framework able to model, simulate and study diffusive

phenomena that unfold on complex networks. NDLIB

represents a multi-level solution: it is designed to offer

a programmatic interface to developers, an experimental

server to those centres that need to offer simulations as a

service and, finally a visual interface for those, students as

well as non-technicians, who want to run simulations and

experiments but don’t have the time to learn a new library or

programming language.

The paper is organized as follows: in Section II we briefly

introduce the network diffusion playground in order to make

clear which are the phenomena that our NDLIB is designed to

analyze; in Section III we review some of the main tools nowa-

days available to study and visualize diffusion simulations. In

Section IV we introduce NDLIB: there we describe how the

library is designed, how to use it and extend it. Moreover, we

introduce NDLIB-REST and NDLIB-Viz: the former being a

service designed to offer remote simulation facilities, the latter

a web-based visual platform that abstracts from the coding

complexity and allows the end user to setup, run and analyze

diffusion experiments without writing any line of code. Finally

in Section V we conclude the paper underlining the advantages

of NDLIB w.r.t. its competitors and providing insights on

the future evolution of our framework. Appendix A briefly

describes the models made available by NDLIB.

II. NETWORK DIFFUSION

The analysis of diffusive phenomena that unfold on top of

complex networks is a task able to attract growing interests

from multiple fields of research. In order to provide a succinct

framing of such complex and extensively studied problem it is

possible to split the related literature into two broad, related,

sub-classes: Epidemics and Spreading and Opinion Dynamics.

A. Epidemics and Spreading

When we talk about epidemics, we think about conta-

gious diseases caused by biological pathogens, like influenza,

measles, chickenpox and sexually transmitted viruses that

spread from person to person. However, other phenomena can

be linked to the concept of epidemic: think about the spread

of computer virus [1] where the agent is a malware that can

transmit a copy of itself from computer to computer, or the

spread of mobile phone virus [2], [3], or the diffusion of

knowledge, innovations, products in an online social network

[4], the so-called “social contagion”, where people are making

2017 International Conference on Data Science and Advanced Analytics

978-1-5090-5004-8/17 $31.00 © 2017 IEEE

DOI 10.1109/DSAA.2017.6

155

Authorized licensed use limited to: University of Pisa. Downloaded on December 27,2022 at 08:48:01 UTC from IEEE Xplore. Restrictions apply.

decision to adopt a new idea or innovation. Several elements

determine the patterns by which epidemics spread through

groups of people: the properties carried by the pathogen (its

contagiousness, the length of its infectious period and its

severity), the structure of the network as well as the mobility

patterns of the people involved. Although often treated as simi-

lar processes, diffusion of information and epidemic spreading

can be easily distinguished by a single feature: the degree of

activeness of the subjects they affect.

Indeed, the spreading process of a virus does not require

an active participation of the people that catch it (i.e., even

though some behaviors acts as contagion facilitators – scarce

hygiene, moist and crowded environment – we can assume

that no one chooses to get the flu on purpose); conversely, we

can argue that the diffusion of an idea, an innovation, or a

trend strictly depend not only on the social pressure but also

by individual choices.

B. Opinion Dynamics

A different field related with modeling social behavior is

that of opinion dynamics. Recent years have witnessed the

introduction of a wide range of models that attempt to explain

how opinions form in a population [5], taking into account

various social theories (e.g. bounded confidence [6] or social

impact [7]). These models have a lot in common with those

seen in epidemics and spreading. In general, individuals are

modeled as agents with a state and connected by a social

network. The social links can be represented by a complete

graph (mean field models) or by more realistic complex

networks, similar to epidemics and spread. The state is

typically represented by variables that can be discrete (similar

to the case of spreading) but also continuous, representing,

for instance, a probability of choosing one option or another

[8]. The state of individuals changes in time, based on a

set of update rules, mainly through interaction with the

neighbors. While in many spreading and epidemics models

this change is irreversible (susceptible to infected), in opinion

dynamics the state can oscillate freely between the possible

values, simulating thus how opinions change in reality. A

different important aspect in opinion dynamics is external

information, which can be interpreted as the effect of mass

media. In general, external information is represented as a

static individual with whom all others can interact, again

present also in spreading models.

Hence, it is clear that the two model categories have enough

in common to be implemented under a common framework,

which is why we introduced both in our framework.

III. COMPLEX NETWORK ANALYSIS TOOLS

When it comes to model and study complex networks

and diffusive phenomena several resources are available to

students, programmers and researchers. In this section we

propose a review of the most used libraries for complex

network analysis (III-A), visual tools (III-B) and simulators

(III-C). Indeed, our review will not cover all the existing

resources but only the ones that, in our opinion, provide

interesting facilities to the end user at a reasonable learning

cost.

A. Libraries

Nowadays, two languages among the others are widely

considered the main players in the data science world: Python

and R. Since SNA has acquired increasing importance in the

data science community in the last years, we decided to focus

our attention on libraries developed for such languages.

Python. The most famous, pure Python package, that pro-

vides graph data structures along with algorithms, synthetic

generators and drawing tools is for sure NetworkX1[9].

Upon such general graph modeling framework is built

the Nepidemix2 library: a suite tailored to programmatically

describe simulation of complex processes on networks [10].

Nepidemix was developed by members of the IMPACT-

HIV group; it is written in Python 2 and uses the module

NetworkX to manage the network structure. It automates

common diffusion simulation steps allowing the programmer

to build a network according to some specifics and to run on

top of it a set of epidemic processes for a specified number

of iterations. Moreover, Nepidemix allows during simulation

to save incremental results such as disease prevalence and

state transitions. Another Python library dedicated to the

simulation of diffusive models is EoN3. EoN is designed to

study the spread of SIS and SIR diseases in networks [11].

It is composed of two sets of algorithms: the first set that

deals with simulation of epidemics on networks (SIR and

SIS) and the second designed to provide solutions of systems

of equations. Also, this package is built on top of NetworkX

graph structures.

R. One of the main library designed to handle, manipulate

and analyze graph structures in R is Igraph4[12]. Igraph is

written in C and is released as Python and R packages. It

can handle large graphs very well and provides functions for

generating random and regular graphs, graph visualization,

centrality analysis, path length and much more.

When it comes to simulating epidemic models in R one

of the most famous package is undoubtedly EpiModel5[13].

EpiModel provides facilities for build, solve, and plot math-

ematical models of infectious disease. It currently provides

functionality for three classes of epidemic models – Deter-

ministic Compartmental Models, Stochastic Individual Contact

Models and Stochastic Network Models – and three types of

infectious disease can be simulated upon them: SI, SIR, SIS.

EpiModel allows generating visual summaries for the execu-

tion of epidemic models; it provides plotting facilities to show

the means and standard deviations across multiple simulations

1NetworkX: https://networkx.github.io
2Nepidemix: http://nepidemix.irmacs.sfu.ca/
3https://github.com/springer-math/Mathematics-of-Epidemics-on-Networks
4Igraph: http://igraph.org/redirect.html
5EpiModel: http://www.epimodel.org/

156

Authorized licensed use limited to: University of Pisa. Downloaded on December 27,2022 at 08:48:01 UTC from IEEE Xplore. Restrictions apply.

while varying the initial infection status. It also includes a

web-based visual application for simulating epidemics6.

B. Network Analysis Visual Tools

Network analysis is nowadays adopted as an analytical

tool by several, even multidisciplinary, fields. In order to

simplify the approach to such discipline, several graphical

tools have been designed: some of them have become

widespread platforms adopted for both small scale analysis

and educational purposes. Among them, we report two open

source examples: Cytoscape and Gephi.

Cytoscape7 is one of the first open source bioinformatic

software platform born to visualize molecular interaction

networks and biological pathways, integrating these networks

with annotations, gene expression profiles and other state

data [14]. Although Cytoscape was originally designed

for biological research, it is extensively used to visualize

and analyze graphs of any kind: additional features (i.e.

community extraction) are made available through a plugin

system thus making the platform easily extensible.

Gephi8 is an open source platform for network analysis

written in Java on top of the NetBeans evironment [15]. It

employs a 3D render engine to display large networks in real-

time and to speed up the exploration. Gephi provides easy

access to a broad collection of network datasets and provides

support for spatializing, filtering, navigating, manipulating and

clustering graph entities.

C. Epidemics Simulators

The visual tools previously introduced provide general

network analysis facilities but are not designed to support the

simulation of spreading phenomena. Here we review some

visual systems specifically designed for such task.

NetLogo9 is a programmable modelling environment for

simulating natural and social phenomena. It was developed

by Uri Wilensky in 1999 [16] and has been in continuous

development ever since at the “Center for Connected

Learning and Computer-Based Modeling”. It is particularly

well suited for modeling complex systems that evolve over

time describing them as agent-based processes. NetLogo

enables users to run a predefined set of simulations and play

with their parameters, exploring their behaviors under various

conditions. NetLogo runs on the Java virtual machine.

GLEaMviz10 is a publicly available software that simulates

the spread of emerging human-to-human infectious diseases

on world scale [17]. The GLEaMviz framework is composed

of three components: the client application, the proxy

6EpiModel viz: https://statnet.shinyapps.io/epinet/
7Cytoscape: http://www.cytoscape.org/
8Gephi: https://gephi.org/
9NetLogo: https://ccl.northwestern.edu/netlogo
10GLEaMviz: http://www.gleamviz.org/

middleware, and the simulation engine. The simulations

it defines combine real-world data on populations and

human mobility with elaborate stochastic models of disease

transmission to simulate disease spread on the global scale.

As output, it provides a dynamic map and several charts

describing the geo-temporal evolution of the disease.

System Sciences11 is an online project created by the

“Institute of Systems Sciences, Innovation and Sustainability

Research” at the University of Graz whose aim is to design

an interactive electronic textbook for systems sciences based

on software applications for tablet computers. In the disease

spreading section offered by this tool, the user can choose

a network from a set of classical network models (random,

small world, scale free and complete network) and then fix the

parameter of the SIR model (the only one implemented so far).

FRED12 (A Framework for Reconstructing Epidemiological

Dynamics) is an open source modeling system developed by

the “Pitt Public Health Dynamics Laboratory” in collaboration

with the “Pittsburgh Supercomputing Center and the School

of Computer Science” at Carnegie Mellon University [18].

FRED supports research on the dynamics of infectious disease

epidemics and the interacting effects of mitigation strategies,

viral evolution and personal health behavior. The system uses

agent-based modeling based on census synthetic populations

data that capture the demographic and geographic distributions

of the population. FRED epidemic models are currently avail-

able for every state and country in the United States, and for

selected international locations.

IV. NDLIB ECOSYSTEM

Since the analysis of diffusive phenomena represents an

hot topic for a number of communities having different

backgrounds, we designed our framework so that it can be

fruitfully used by the widest user segment possible. To do so

we organized it in three incremental modules: the NDLIB core

library (written in Python), a REST service accessible through

API calls and, finally, a dynamic visual interface.
In this section we will describe and discuss the major

characteristics of each of such components (as implemented in

NDLIB v2.0.1), paying attention to underline the rationale be-

hind the implementation choices made and their repercussions

on the framework usability.

A. NDLIB: Network Diffusion Library
At the core of our tool there is NDLIB, whose name stands

for “(N)etwork (D)iffusion Library”, a Python package built

upon the network facilities offered by NetworkX. The library,

available for Python 2.7.x and 3.x, is currently hosted on

GitHub13 , on pypi14 and has its online documentation on

ReadTheDocs15. A complete list of the diffusion models

11System Sciences: http://systems-sciences.uni-graz.at/etextbook/
12FRED: http://fred.publichealth.pitt.edu/measles
13NDLIB GitHub: https://github.com/GiulioRossetti/ndlib
14NDLIB pypi: https://pypi.python.org/pypi/ndlib
15NDLIB docs: http://ndlib.readthedocs.io

157

Authorized licensed use limited to: University of Pisa. Downloaded on December 27,2022 at 08:48:01 UTC from IEEE Xplore. Restrictions apply.

implemented in NDLIB v2.0.1 – 8 from the epidemics

and 5 from the opinion dynamics categories –, along

with their short descriptions, is reported in Appendix A.

Indeed, NDLIB is intended for developers and all those

users that have basilar knowledge of Python programming

that want to run simulation experiments on their own machine.

NDLIB Rationale. NDLIB models diffusive phenomena

as a discrete-time agent-based processes: given a network

G = (V,E) and its actual state Si, the request of a diffusion

iteration will return a novel state Si+1 obtained by applying

the model evolution rules to all the nodes in V .

The library decomposes the diffusion process into three

components: (i) the graph topology on which the process take

place; (ii) the specific diffusion model to simulate; (iii) the

configuration of the model and infection initial state.

The first component, the graph topology, is borrowed by the

available entities exposed by the NetworkX library: indeed,

the implementation of all NDLIB models is agnostic w.r.t. the

directedness of the graph, thus allowing the user to use both

undirected as well as directed networks in his simulations.

The second component, the model selection, is designed so

to expose to the final user a minimal and coherent interface:

all the models extend a generic template that takes care of

handling the initialization phase and to expose step-by-step

simulation facilities.

Finally, the third component, the simulation initialization

interface, allows the user to fully specify three different classes

of information:

(i) model specific parameters (e.g. the β parameter for the

SI model);

(ii) nodes’ and edges’ attributes (e.g. node/edge-wise thresh-

olds for the Threshold/Independent Cascade models);

(iii) the initial state of the epidemic (e.g. the percentage of

nodes in each status - randomly chosen - or a planted

initial configuration of node statuses).

The configuration object plays a fundamental role in the

library logic: it acts as the focus of experiment description

thus making the simulation definition and invocation coherent

across all the exposed models.

The following code shows an example of experiment defi-

nition, configuration and execution.
1 import networkx as nx
2 import ndlib.models.ModelConfig as mc
3 import ndlib.models.epidemics.SIRModel
4 as sir
5

6 # Network topology
7 g = nx.erdos_renyi_graph(1000, 0.1)
8

9 # Model selection
10 model = sir.SIRModel(g)
11

12 # Model Configuration
13 cfg = mc.Configuration()
14 cfg.add_model_parameter(’beta’, 0.001)
15 cfg.add_model_parameter(’gamma’, 0.01)
16 cfg.add_model_parameter("percentage_infected",

17 0.05)
18 model.set_initial_status(cfg)
19

20 # Simulation execution
21 iterations = model.iteration_bunch(200)

In lines 1-4 are imported all the required modules; in

line 7 an Erdös Renyi graph g is built using a NetworkX

generator; in line 10 the SIR model is attached to

the graph g; in lines 13-18 the model initial status is

configured; finally, line 21 shows how 200 iterations of

the simulation can be obtained by the invocation of the

model.iteration_bunch(bunch_size=n) method

(where n = 200 identifies the number of desired iterations).

An alternative to the iteration bunch simulation request is

offered by the step-by-step model.iteration() method,

a call that returns as output a single simulation iteration.

The status returned by both model.iteration()
and model.iteration_bunch(bunch_size=n) is

incremental: each iteration describes the configurations of

those nodes that changed their status from the previous model

iteration.

In order to allow the final user to easily analyze the behavior

of a simulation NDLIB exposes a set of visual facilities. By

exploiting the Bokeh16 library, NDLIB defines a visualization

package ndlib.viz.bokeh. Among the facility offered by

such package, the DiffusionTrend object that takes care

of generating trend line plots starting from the configured

model and computed iterations.

22 from bokeh.io import show
23 from ndlib.viz.bokeh.DiffusionTrend import
24 DiffusionTrend
25

26 viz = DiffusionTrend(model, iterations)
27 p = viz.plot(width=400, height=400)
28 show(p)

In addition, within the same package is also made available

a DiffusionPrevalence plot:

29 from bokeh.io import show
30 from ndlib.viz.bokeh.DiffusionPrevalence
31 import DiffusionPrevalence
32

33 viz = DiffusionPrevalence(model, iterations)
34 p1 = viz.plot(width=400, height=400)
35 show(p)

The plot() method, implemented by both classes, uses

the model configuration and iteration results to generate

plots as the ones in Figure 1: labels, headings, parame-

ter values are retrieved by the metadata within the config-

ured model object thus making the plot template agnos-

tic w.r.t. the specific model used during the simulation. In

particular the DiffusionTrend plot shows the temporal

trend for the node statuses specified by the model while

the DiffusionPrevalence one underline their variation

across consecutive iterations (e.g. the delta of the number of

nodes that have a status s w.r.t. consecutive iterations).

16Bokeh: http://bokeh.pydata.org

158

Authorized licensed use limited to: University of Pisa. Downloaded on December 27,2022 at 08:48:01 UTC from IEEE Xplore. Restrictions apply.

Moreover, in order to better compare runs of different

models (as well as different configurations of the same model)

on the same graph the ndlib.viz.bokeh package exposes

a multiplot facility with grid auto-layout as shown in the

following snippet:

1 from ndlib.viz.bokeh.MultiPlot
2 import MultiPlot
3

4 vm = MultiPlot()
5

6 # Add the generated plots
7 vm.add_plot(p)
8 vm.add_plot(p1)
9

10 # Visualize them
11 multi = vm.plot()

Extend NDLIB. As discussed before, all the diffusion

models implemented in NDLIB extend the same tem-

plate defined by ndlib.models.DiffusionModel. The

DiffusionModel abstract class takes care of: (i) validate

the coherence and completeness of the ModelConfig object

used to instantiate the simulation; (ii) initialize the simula-

tion; (iii) define a common interface for parameter passing

and model execution. Extending the NDLIB library is easy:

a novel model, identified by a Python class that extends

DiffusionModel, must implement two methods: (i) its

constuctor (e.g. __init__(self, graph)), and (ii) the

iteration step (e.g. iteration()). The __init__ method

is used to provide a meta description for the model parameters

(both global and node/edge specific) as well as for the node

statuses. Such meta-data, whose example is reported in the

code below, has two roles: it allows DiffusionModel
to check the consistency of the model configuration and

enables the VisualizeDiffusion object to customize the

simulation visualizations.

1 from ndlib.models.DiffusionModel
2 import DiffusionModel
3

4 class MyModel(DiffusionModel):
5 def __init__(self, graph):
6 super(self.__class__, self)
7 .__init__(graph)
8

9 # Method name
10 self.name = "MyModel"
11

12 # Available node statuses
13 self.available_statuses = {
14 "Susceptible": 0,
15 "Infected": 1
16 }
17

18 # Exposed Parameters
19 self.parameters = {
20 "model":
21 "name": {
22 "descr": "Infection Rate"
23 "range": [0,1],
24 "optional": False
25 },
26 },

27 "nodes": {},
28 "edges": {},
29 }

The core of each diffusion model is thus defined in its

iteration() method. As discussed before the entire dif-

fusion process can be seen as an agent-based discrete-time

simulation: the iteration() method describe the rules

that decide for each agent (i.e. a node), during a round of

simulation, if it will maintain its status or change it.

As shown in the example below, the iteration step is

composed of three stages: (i) collection of the actual nodes’

statuses, (ii) update cycle over the nodes, and (iii) computation

of the incremental updates. Note that the first step is mandatory

since we consider each iteration as atomic and we expect a

synchronous updates of all the nodes (e.g. the model rules

must be applied to all the agents starting from the same initial

configuration).

30 def iteration(self):
31 # Set initial node statuses
32 actual_status = {node: nstatus for node,
33 nstatus in self.status.iteritems()}
34

35 # first iteration
36 if self.actual_iteration == 0:
37 self.actual_iteration += 1
38 return 0, actual_status
39

40 # iteration inner loop
41 for u in self.graph.nodes():
42 # Iteration updates
43

44 # Incremental result
45 delta = self.status_delta(actual_status)
46 self.status = actual_status
47 self.actual_iteration += 1
48

49 return self.actual_iteration - 1, delta

B. NDLIB-REST: simulation web service

As discussed before, the simulation facilities offered by

NDLIB are specifically designed for those users that want to

run experiments on their local machine. However, in some

scenarios, e.g. due to limited computational resources or to

the rising of other particular needs, it may be convenient

to separate the machine on which the definition of the

experiment is made from the one that actually executes the

simulation. In order to satisfy such needs, we developed a

RESTfull service, NDLIB-REST17 , that builds upon NDLIB

an experiment server queryable through API calls.

NDLIB-REST rationale. The simulation web service is

designed around the concept of experiment. An experiment,

identified by a unique identifier, is composed of two entities:

(i) a network and (ii) one (or more) configured models.

Experiments are used to keep track of the simulation

definition, to return consecutive model iterations to the user

17NDLIB-REST: https://github.com/GiulioRossetti/ndlib-rest

159

Authorized licensed use limited to: University of Pisa. Downloaded on December 27,2022 at 08:48:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. NDLIB DiffusionTrend and DiffusionPrevalence SIR plots.

Fig. 2. NDLIB-REST documentation webpage.

and to store - locally on the experiment server - the current

status of the diffusion process.

In particular, in order to perform an experiment, a user must:

1. Request a token, which univocally identifies the experi-

ment;

2. Select or load a network resource;

3. Select one, or more, diffusion model(s);

4. (optional) Use the advanced configuration facilities to

define node/edge parameters;

5. Execute the step-by-step simulation;

6. (optional) Reset the experiment status, modify the mod-

els/network;

7. Destroy the experiment.

The last action, involving the destruction of the experiment,

is designed to clean the serialization made by the service

of the incremental experiment status. If an experiment

is not explicitly destroyed its data is removed, and the

associated token invalidated, after a temporal window that

can be configured by the service administrator. NDLIB-REST

is shipped as a Docker18 container image so to make

it configuration free and easier to setup. Moreover, the

simulation server is, by default, executed within a Gunicorn19

instance allowing parallel executions of multiple experiments

at the same time. NDLIB-REST is built using Flask20 and

offers a standard online documentation page (shown in Figure

2) that can also be directly used to test the exposed endpoints

both configuring and running experiments.

REST API. As a standard for REST services, all the

calls made to NDLIB-REST endpoints generate JSON

responses. The APIs of the simulation service are organized

in six categories so to provide a logic separation among all

the exposed resources. In particular, in NDLIB-REST are

exposed endpoints handling:

• Experiments: endpoints in this category allow to create,

destroy, configure, reset and describe experiments;

• Exploratories: endpoints in this category allow to load

predefined scenarios (e.g. specific networks/models with

explicit initial configuration);

• Resources: endpoints in this category allow to query the

system to dynamically discover the endpoints (and their

descriptions) defined within the system;

• Networks: endpoints in this category handle a load of

network data as well as the generation of synthetic graphs

18Docker: https://www.docker.com/
19Gunicorn: http://gunicorn.org/
20Flask: http://flask.pocoo.org/

160

Authorized licensed use limited to: University of Pisa. Downloaded on December 27,2022 at 08:48:01 UTC from IEEE Xplore. Restrictions apply.

(Barabasi-Albert, Erdös-Renyi, Watts-Strogatz, . . .);

• Models: endpoints in this category expose the NDLIB

models;

• Iterators: endpoints in this category expose the step-

by-step and iteration bunch facilities needed to run the

simulation.

Since the simulation service allows to attach multiple diffusion

models to the same experiment both the single iteration and

the iteration bunch endpoints expose additional parameters

that allow the user to select the models for which the call was

invoked. By default, when such parameter is not specified,

all the models are executed and their incremental statuses

returned. A particular class of endpoints is the Exploratories

one. Such endpoints are used to define the access to pre-set

diffusion scenarios. Using such facilities the owner of the

simulation server can describe, beforehand, specific scenarios,

package them and make them available to the service users.

From an educational point of view such mechanism can

be used, for instance, by professors to design emblematic

diffusion scenarios (composed by both network and initial

nodes/edges statuses) so to let the students explore their

impact on specific models configurations (e.g. to analyze the

role of weak-ties and/or community structures).

Python API wrapper. In order to provide a simplified

interface to query the NDLIB-REST service, we defined

a Python wrapper that organizes and exposes all the

implemented API. Such API wrapper, shipped along with the

web service, allows to define and run remote experiments as

shown in the example below:

1 from NDlibClient import NDlibClient
2

3 # Connecting the simulation service
4 e = NDlibClient("http://127.0.0.1:5000")
5

6 # Configuring the experiment
7 e.create_experiment()
8 x = e.add_erdos_renyi_graph(300, 0.01)
9 e.add_SIR(infected=0.1,

10 beta=0.001, gamma=0.01)
11

12 # Execute the experiment
13 res = e.get_iteration_bunch(bunch=200)
14

15 e.destroy_experiment()

C. NDLIB-Viz: Visualization Framework

Finally, upon the NDLIB-REST service, we design a

visualization platform21. NDLIB-Viz aims to make non-

technicians able to design, configure and run epidemic

simulations, thus removing the barriers introduced by the

usual requirements of programming language knowledge.

Indeed, apart from the usual research-oriented audience,

we developed NDLIB-Viz to support students and facilitate

teachers to introduce epidemic models: in order to better

support the educational nature of the proposed platform and

21Available at: https://github.com/GiulioRossetti/ndlib-viz

Fig. 3. NDLIB Visualization Framework appearance during a simulation.
The top toolbar presents a schematic workflow to execute a simulation. The
central view presents a visualization of the status of each node. The bottom
part presents a synthetic visualization of properties of the simulation. Mouse
interaction allow the user to select a specific time instant of the simulation to
update all the other views accordingly

collect user feedbacks, we currently employ NDLIB-Viz in

a Social Analysis course of the Computer Science Master

Degree at the University of Pisa, Italy. The platform itself is

a web application: it can be executed on a local as well as

on a remote NDLIB-REST installation. The visual interface

guides the user to follow the NDLIB-REST workflow through

a toolbar on top of the page with a schematic representation

of the expected steps (see Figure 3). As a first step, the user

should create an experiment and a network. The parameters

to import or generate the network are exposed via a web

form, providing also suggestions and error checking for

the parameters entered by the user. Once the network has

been created, it is rendered on the screen in a viewport. At

the second step, the user may create one or more diffusion

models to attach to the network. Each model is simulated

161

Authorized licensed use limited to: University of Pisa. Downloaded on December 27,2022 at 08:48:01 UTC from IEEE Xplore. Restrictions apply.

according to the specifics of NDLIB-REST. The simulation

is handled by the user in the third step, where she can

choose the number of iteration to execute. The time discrete

simulation is presented to the user by mean of a set of linked

displays [19], where the selection and interaction performed

on a view are propagated to the other views. The main view

is the visualization of the network, showing all the nodes

and their links. Each node is assigned a color to represent its

status in a specific time instant of the simulation. The choice

of the time instant to visualize is determined by the user, by

means of selection of the mouse on the linked displays. The

bottom part of the interface shows the result of simulation

for each model. An aggregated visualization of each model is

presented in a block containing the reference to the model and

its parameters, and two charts to show DiffusionTrend
and DiffusionPrevalence plots, like those presented

in Section IV. Exploiting the web interface, the plots are

interactive. Exploring the plots with the mouse the user may

receive additional information on specific time instant (see

tooltip box in the example in Figure 3). The selection on the

plot is directly linked with the block of network visualization,

showing the node statuses in the corresponding time instant.

Architecture. The Visualization Framework is a single

page web application implemented using Javascript and

HTML 5. The decoupling of the simulation engine and

the visual interface allow us to exploit modern browsers

to provide an efficient environment for visualization of

models and interactions. The structure and layout of the

page are managed with Bootstrap22. The business logic and

visualization of graphical widgets are implemented in D3.js23.

Nodes and edges of the networks are drawn using the Force

Layout library provided by the D3 library. The network

visualization is implemented using Canvas object provided by

standard HTML5. This allows a very efficient update of the

network view. The charts showing the Diffusion Trend and

Prevalence (presented in section IV) are created using NVD3

library24.

The Visualization Framework is implemented using a

Model-Control-View (MCV) design pattern. The model is

managed by a central component that implements a REST

API client that handle the status of the experiment. When

the user interacts with one of the views (charts, network

layout, toolbar) the controller notifies the model to update

the experiment. Each interaction with the visual interface is

managed by the model component that centralizes all the

communications with the REST server. The calls to the server

are executed asynchronously and the component updates the

visual interface as soon as a response arrives from the server.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduced the NDLIB environment, a

modular framework designed to provide an easy access to

22Bootstrap: http://getbootstrap.com/
23D3.js:https://d3js.org/
24NVD3: http://nvd3.org/

network diffusion simulation models to a broad user base.

The framework, composed by a standalone library NDLIB, a

RESTfull simulation service, and a visualization tool is built

upon the NetworkX library and released as free software.

Indeed, several tools are nowadays available to students,

developers and researchers to simulate and study diffusive

phenomena on complex networks, however NDLIB is one of

the first that offers multiple interfaces specifically designed to

solve specific use case. Among its competitors, partially de-

scribed in Section III-A, only the EpiModel R package seems

able to offer a comparable framework in terms of library and

visualization facilities: however, NDLIB is tailored for a wider

audience making easy to set up remote experimental services.

Moreover, the number of implemented models (see Appendix

A) as well as the extensibility of the library make NDLIB a

valid solution for those users that need to compare different

diffusive schema other than the classical compartimental ones

(SI, SIS, SIR).

As future work we plan to further increase the number of

models implemented in the NDLIB library and to extend it

to support not only static graphs but also evolving ones thus

allowing the simulation of both dynamics on and of networks.

Moreover, NDLIB-REST is in process of being integrated into

a visual simulation platform developed within the CIMPLEX

H2020 EU project.

ACKNOWLEDGMENTS

This work is funded by the European Community’s H2020

Program under the funding scheme “FETPROACT-1-2014:

Global Systems Science (GSS)”, grant agreement # 641191

CIMPLEX “Bringing CItizens, Models and Data together

in Participatory, Interactive SociaL EXploratories”25. This

work is supported by the European Community’s H2020

Program under the scheme “INFRAIA-1-2014-2015: Research

Infrastructures”, grant agreement #654024 “SoBigData: Social
Mining & Big Data Ecosystem”26.

REFERENCES

[1] P. Szor, “Fighting computer virus attacks.” USENIX, 2004.
[2] S. Havlin, “Phone infections,” Science, 2009.
[3] P. Wang, M. C. González, R. Menezes, and A. L. Barabási, “Understand-

ing the spread of malicious mobile-phone programs and their damage
potential,” International Journal of Information Security, 2013.

[4] R. S. Burt, “Social Contagion and Innovation: Cohesion Versus Struc-
tural Equivalence,” American Journal of Sociology, 1987.

[5] A. Sı̂rbu, V. Loreto, V. D. Servedio, and F. Tria, “Opinion dynamics:
Models, extensions and external effects,” in Participatory Sensing,
Opinions and Collective Awareness. Springer International Publishing,
2017, pp. 363–401.

[6] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, “Mixing beliefs
among interacting agents,” Advances in Complex Systems, vol. 3, no. 4,
pp. 87–98, 2000.

[7] K. Sznajd-Weron and J. Sznajd, “Opinion evolution in closed commu-
nity,” International Journal of Modern Physics C, vol. 11, pp. 1157–
1165, 2001.

[8] A. Sı̂rbu, V. Loreto, V. D. Servedio, and F. Tria, “Opinion dynamics
with disagreement and modulated information,” Journal of Statistical
Physics, pp. 1–20, 2013.

25CIMPLEX: https://www.cimplex-project.eu
26SoBigData: http://www.sobigdata.eu

162

Authorized licensed use limited to: University of Pisa. Downloaded on December 27,2022 at 08:48:01 UTC from IEEE Xplore. Restrictions apply.

[9] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., 2008, pp. 11–15.

[10] L. Ahrenberg, S. Kok, K. Vasarhelyi, and A. Rutherford, “Nepidemix,”
2016.

[11] I. Z. Kiss, J. C. Miller, and P. Simon, (Book) Mathematics of epidemics
on networks: from exact to approximate models. Springer, Forthcoming.

[12] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, Complex Systems, vol. 1695, no. 5, pp.
1–9, 2006.

[13] S. Jenness, S. M. Goodreau, and M. Morris, “Epimodel: Mathematical
modeling of infectious disease. r package version 1.3.0.” 2017. [Online].
Available: http://www.epimodel.org

[14] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker, “Cytoscape: a software en-
vironment for integrated models of biomolecular interaction networks.”
Genome Research, vol. 13, pp. 2498–2504, Nov. 2003.

[15] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks.” in ICWSM. The
AAAI Press, 2009.

[16] U. Wilensky, “Netlogo,” 1999.
[17] W. Van den Broeck, C. Gioannini, B. Gonçalves, M. Quaggiotto,

V. Colizza, and A. Vespignani, “The gleamviz computational tool,
a publicly available software to explore realistic epidemic spreading
scenarios at the global scale,” BMC infectious diseases, vol. 11, no. 1,
p. 37, 2011.

[18] J. J. Grefenstette, S. T. Brown, R. Rosenfeld, J. DePasse, N. T. Stone,
P. C. Cooley, W. D. Wheaton, A. Fyshe, D. D. Galloway, A. Sriram et al.,
“Fred (a framework for reconstructing epidemic dynamics): an open-
source software system for modeling infectious diseases and control
strategies using census-based populations,” BMC public health, vol. 13,
no. 1, p. 940, 2013.

[19] C. M. Newton, “Graphics: from alpha to omega in data analysis,”
in Graphical Representation of Multivariate Data, P. C. Wang,
Ed. Academic Press, 1978, pp. 59 – 92. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B9780127347509500083

[20] W. O. Kermack and A. McKendrick, “A Contribution to the Mathemat-
ical Theory of Epidemics,” Proceedings of the Royal Society of London.
Series A, Containing Papers of a Mathematical and Physical Character,
vol. 115, no. 772, pp. 700–721, Aug. 1927.

[21] M. Granovetter, “Threshold models of collective behavior,” The Ameri-
can Journal of Sociology, vol. 83, no. 6, pp. 1420–1443, 1978.

[22] Z. Ruan, G. Iñiguez, M. Karsai, and J. Kertész, “Kinetics of social
contagion,” Phys. Rev. Lett., vol. 115, p. 218702, Nov 2015.

[23] D. J. Watts, “A simple model of global cascades on random networks,”
Proceedings of the National Academy of Sciences, vol. 99, no. 9, pp.
5766–5771, 2002.

[24] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’03, 2003, pp. 137–146.

[25] P. Clifford and A. Sudbury, “A model for spatial conflict,” Biometrika,
vol. 60, no. 3, pp. 581–588, 1973.

[26] R. Holley and T. Liggett, “Ergodic theorems for weakly interacting
infinite systems and the voter model,” Ann. Probab., vol. 3, no. 4, pp.
643–663, Aug 1975.

[27] P. L. Krapivsky, S. Redner, and E. Ben-Naim, A kinetic view of statistical
physics. Cambridge University Press, 2010.

[28] C. Castellano, M. A. Munoz, and R. Pastor-Satorras, “The non-linear
q-voter model,” Physical Review E, vol. 80, p. 041129, 2009.

[29] S. Galam, “Minority opinion spreading in random geometry,” Eur. Phys.
J. B, vol. 25, no. 4, pp. 403–406, 2002.

[30] R. Friedman and M. Friedman, The Tyranny of the Status Quo. Orlando,
FL, USA: Harcourt Brace Company, 1984.

[31] D. Vilone, F. Giardini, M. Paolucci, and R. Conte, “Reducing individ-
uals’ risk sensitiveness can promote positive and non-alarmist views
about catastrophic events in an agent-based simulation,” arXiv preprint
arXiv:1609.04566, 2016.

APPENDIX

DIFFUSION METHODS IMPLEMENTED IN NDLIB

NDLIB exposes several network diffusion models, covering

both epidemic approaches as well as and opinion dynamics. In

particular, the actual release of the library (v2.0.1) implements

the following algorithms:

A. Epidemic Models.

SI: This model was introduced in 1927 by Kermack [20].

In the SI model, during the course of an epidemics, a node

is allowed to change its status only from Susceptible (S) to

Infected (I). SI assumes that if, during a generic iteration, a

susceptible node comes into contact with an infected one, it

becomes infected with probability β: once a node becomes

infected, it stays infected (the only transition is S → I).

SIR: this model was still introduced in 1927 by Kermack

[20]. In the SIR model, during the course of an epidemics, a

node is allowed to change its status from Susceptible (S) to

Infected (I), then to Removed (R). SIR assumes that if, during

a generic iteration, a susceptible node comes into contact with

an infected one, it becomes infected with probability β, than

it can be switch to removed with probability γ (the only

transition allowed are S → I → R).

SIS: as SIR, the SIS model is a variation of the SI model

introduced in [20]. The model assumes that if, during a

generic iteration, a susceptible node comes into contact with

an infected one, it becomes infected with probability β, than

it can be switch again to susceptible with probability λ (the

only transition allowed are S → I → S).

Threshold: this model was introduced in 1978 by Granovet-

ter [21]. In the Threshold model during an epidemics, a node

has two distinct and mutually exclusive behavioral alternatives,

e.g., it can adopt or not a given behavior, participate or not

participate in a riot. Nodes individual decision depends on

the percentage of its neighbors have made the same choice,

thus imposing a threshold. The model works as follows: each

node starts with its own threshold τ and status (infected or

susceptible). During the iteration t every node is observed: iff

the percentage of its neighbors that were infected at time t−1
is grater than its threshold it becomes infected as well.

Kertesz Threshold: this model was introduced in 2015

by Ruan et al. [22] and it is an extension of the Watts

threshold model [23]. The authors extend the classical model

introducing a density r of blocked nodes - nodes which are

immune to social influence - and a probability of spontaneous

adoption p to capture external influence. Thus, the model

distinguishes three kinds of node: Blocked (B), Susceptible

(S) and Adoptiong (A). A node can adopt either under its

neighbors influence or due to endogenous effects.

Independent Cascades: this model was introduced by

Kempe et all in 2003 [24]. The Independent Cascades model

starts with an initial set of active nodes A0: the diffusive

process unfolds in discrete steps according to the following

randomized rule:

• When node v becomes active in step t, it is given a single

chance to activate each currently inactive neighbor w; it

succeeds with a probability pv,w.

• If w has multiple newly activated neighbors, their at-

tempts are sequenced in an arbitrary order.

163

Authorized licensed use limited to: University of Pisa. Downloaded on December 27,2022 at 08:48:01 UTC from IEEE Xplore. Restrictions apply.

• If v succeeds, then w will become active in step t + 1;

but whether or not v succeeds, it cannot make any further

attempts to activate w in subsequent rounds.

The process runs until no more activations are possible.

Node Profile: this model is a variation of the Threshold

one, it assumes that the diffusion process is only apparent;

each node decides to adopt or not a given behavior - once

known its existence - only on the basis of its own interests. In

this scenario the peer pressure is completely ruled out from the

overall model: it is not important how many of its neighbors

have adopted a specific behaviour, if the node does not like

it, it will not change its interests. Each node has its own

profile describing how many it is likely to accept a behaviour

similar to the one that is currently spreading. The diffusion

process starts from a set of nodes that have already adopted

a given behaviour H: for each of the susceptible nodes in

the neighborhood of a node u that has already adopted H , an

unbalanced coin is flipped, the unbalance given by the personal

profile of the susceptible node; if a positive result is obtained

the susceptible node will adopt the behaviour.

Node Profile-Threshold: this model, still extension of the

Threshold one, assumes the existence of node profiles that

act as preferential schemas for individual tastes but relax the

constraints imposed by the Profile model by letting nodes

influenceable via peer pressure mechanisms. The peer pressure

is modeled with a threshold. The diffusion process starts from

a set of nodes that have already adopted a given behaviour

H: for each of the susceptible node an unbalanced coin is

flipped if the percentage of its neighbors that are already

infected excedes its threhosld. As in the Profile Model the coin

unbalance is given by the personal profile of the susceptible

node; if a positive result is obtained the susceptible node will

adopt the behaviour.

B. Opinion Dynamic Models.

Voter: this model is one of the simplest models of opinion

dynamics, originally introduced to analyze competition of

species [25] and soon after applied to model elections [26].

The model assumes the opinion of an individual to be a

discrete variable ±1. The state of the population varies based

on a very simple update rule: at each iteration, a random

individual is selected, who then copies the opinion of one

random neighbor. Starting from any initial configuration, on

a complete network, the entire population converges to a

consensus on one of the two options [27]. The probability

that consensus is reached on opinion +1 is equal to the initial

fraction of individuals holding that opinion.

Snajzd: this model [7] is a variant of spin model employing

the theory of social impact, which takes into account the fact

that a group of individuals with the same opinion can influence

their neighbors more than one single individual. In the original

model the social network is a 2-dimensional lattice, however,

we also implemented the variant on any complex networks.

Each agent has an opinion σi = ±1; at each time step, a

pair of neighboring agents is selected and, if their opinion

coincides, all their neighbors take that opinion. The model has

been shown to converge to one of the two agreeing stationary

states, depending on the initial density of up-spins (transition

at 50% density).

Q-Voter: this model was introduced as a generalization of

discrete opinion dynamic models [28]. Here, N individuals

hold an opinion ±1. At each time step, a set of q neighbors are

chosen and, if they agree, they influence one neighbor chose

at random, i.e. this agent copies the opinion of the group.

If the group does not agree, the agent flips its opinion with

probability ε. It is clear that the voter and Sznajd models are

special cases of this more recent model (q = 1, ε = 0 and

q = 2, ε = 0, respectively). Analytic results for q ≤ 3 validate

the numerical results obtained for the special case models, with

transitions from an ordered phase (small ε) to a disordered

one (large ε). For q > 3, a new type of transition between

the two phases appears, which consist of passing through an

intermediate regime where the final state depends on the initial

condition. We implemented in NDlib the model with ε = 0.

Majority Rule: this model is a different discrete model of

opinion dynamics, proposed to describe public debates [29].

Agents take discrete opinions ±1, just like the voter model.

All agents can interact with all other agents (also in our

implementation), so the social network is always a complete

graph. At each time step, a group of r agents is selected

randomly and they all take the majority opinion within the

group. The group size can be fixed or taken at each time

step from a specific distribution. If r is odd, then the majority

opinion is always defined, however, if r is even there could

be tied situations. To select a prevailing opinion, in this case,

a bias in favor of one opinion (+1) is introduced. This idea is

inspired by the concept of social inertia [30].

Cognitive Opinion Dynamics: this model was introduced

by Vilone et all. [31], which models the state of individuals

taking into account several cognitively-grounded variables.

The aim is to simulate a response to risk in catastrophic events

in the presence of external (institutional) information. The

individual opinion is modeled as a continuous variable Oi ∈
[0, 1], representing the degree of perception of the risk (how

probable it is that the catastrophic event will actually happen).

This opinion evolves through interactions with neighbours and

external information, based on four internal variables for each

individual i: risk sensitivity (Ri ∈ {−1, 0, 1}), tendency to

inform others (βi ∈ [0, 1]), trust in institutions (Ti ∈ [0, 1])
and trust in peers (Πi = 1 − Ti). These values are generated

when the population is initialized and stay fixed during the

simulation. In our implementation, we allow some control

on the distribution of these parameters. The update rules

define how Oi values change in time (see original paper [31]

for details). The model was shown to be able to reproduce

well various real situations; in particular, it is visible that

risk sensitivity is more important than trust in institutional

information when it comes to evaluating risky situations.

164

Authorized licensed use limited to: University of Pisa. Downloaded on December 27,2022 at 08:48:01 UTC from IEEE Xplore. Restrictions apply.

