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Abstract—Complex networks have been receiving increas-
ing attention by the scientific community, also due to the
availability of massive network data from diverse domains.
One problem largely studied so far is Link Prediction, i.e.
the problem of predicting new upcoming connections in the
network. However, one aspect of complex networks has been
disregarded so far: real networks are often multidimensional,
i.e. multiple connections may reside between any two nodes.
In this context, we define the problem of Multidimensional
Link Prediction, and we introduce several predictors based
on structural analysis of the networks. We present the results
obtained on real networks, showing the performances of both
the introduced multidimensional versions of the Common
Neighbors and Adamic-Adar, and the derived predictors aimed
at capturing the multidimensional and temporal information
extracted from the data. Our findings show that the evolution
of multidimensional networks can be predicted, and that
supervised models may improve the accuracy of underlying
unsupervised predictors, if used in conjunction with them.

Keywords-Link Analysis; Graph Mining; Link Prediction;
Network Analysis;

I. INTRODUCTION

Network Science, Graph Data Mining and Social Network

Analysis are receiving large attention in the last years,

also thanks to the increasing availability of real network

data, mostly concerning human behaviors. One hot topic

of research in these fields is studying dynamic networks.

Researchers have been investigating, from the global to

the local level, problems such as the analysis of structural

changes during time [1],the evolution of communities [2],

the extraction of frequent local patterns of evolution [3],

and the prediction of new nodes and links joining the

network structure in the future [4], [5], [6], [7], i.e., the

Link Prediction problem [8]. So far, these problems have

been studied on monodimensional network, i.e. networks

where only one connection between two nodes is possible.

Real world networks, however, are often multidimensional:

two nodes may be connected by more than one relation,

that we call dimensions, expressing either different types of

relationship (e.g. friends, colleagues, relatives), or different

quantitative values of the same kind of relationship (e.g.

different ranks, or different publication venues for the same

co-authorship relation). The additional degree of freedom

that different dimensions add to the classical problems of

network analysis, makes it difficult, when not impossible,

to treat these kind of networks with the available tools.

Questions such as “can we predict the evolution of a

multidimensional network?”, “what is the probability that a

new link between two specific nodes will form in dimension

one?”, require new tools of analysis that take the interplay

among dimensions into account.

In this context, we introduce the Multidimensional Link

Prediction problem. Following the approach of a large family

of studies based on structural properties of the network

such as, for example, Common Neighbors [5], Preferential

Attachment [6] or Adamic-Adar [4], we introduce several

new classes of predictors able to exploit the knowledge

that can be learned from the multidimensional structure of

networks to predict new links in specific dimensions. In our

vision, the evolution of a multidimensional network depends

on three factors: i) the underlying theoretical model of node

interactions (e.g. nodes with high degree tend to attract more

connections); ii) the interplay among dimensions (e.g. links

may form in a specific dimension with a higher likelihood);

iii) the complete temporal history of a link (e.g. links

always present during the network history may be more

likely to appear also in the future). In oder to reflect this,

we build predictors that combine the contribution of three

basic measurements used in conjunction: i) multidimensional

versions of Common Neighbors and Adamic-Adar, ii) global

measures capturing the interplay of multiple dimensions at

different levels, and iii) measures based on the complete

history of the presence of a link within a network.

Our contribution can be then summarized as follows: we

introduce structural measures for capturing the interplay

among dimensions and a few measures on the temporal

history of a link between two nodes (Section II); we de-

fine the Multidimensional Link Prediction problem, and we

propose several scalable predictors based on combinations of

the introduced concepts (Section III); we give experimental

evaluation of the proposed approaches on real world mul-

tidimensional networks (Section IV). Our results show that

we are able to predict the evolution of a multidimensional

network, and that multidimensional and temporal informa-

tion, used either individually or in combination, can improve

the accuracy of the classical theoretical predictors based on

structural properties of networks.
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Figure 1. Example of multidimensional networks

II. MULTIDIMENSIONAL NETWORKS

Figure 1 depicts two possible multidimensional networks,

where on the left we have different types of links connecting

the three nodes (they can be friends, colleagues, and so

on), while on the right we have different values (publication

venues) for one relationship (for example, co-authorship). In

this setting, multidimensional analysis is needed to distin-

guish among different kinds of interactions, or equivalently

to look at interactions from different perspectives. Dimen-

sions in network data can be either explicit or implicit.

In the first case, where usually the nodes explicitly set

their connections (two users of a social network become

friends, two computers exchange a message, and so on), the

dimensions directly reflect the various interactions in reality;

in the second case, the dimensions are defined (mostly in a

passive way from the perspective of the nodes) by the analyst

to reflect different interesting qualities of the interactions,

that can be inferred from the available data.

We now present a formal model for multidimensional

networks, and a set of measures for them.

A. A model for multidimensional networks

We use a multigraph to model a multidimensional network

and its properties. For the sake of simplicity, in our model

we only consider undirected multigraphs and since we do

not consider node labels, hereafter we use edge-labeled undi-
rected multigraphs, denoted by a tuple G = (V,E, L, T, τ)
where: V is a set of nodes; L is a set of labels; E is a

set of labeled edges, i.e. the set of triples (u, v, d) where

u, v ∈ V are nodes and d ∈ L is a label; T is a set

of timestamps; τ : E → P(T ) is a function returning

the set of timestamps of presence of a given edge (and

P(T ) denotes the power set of T ). Where we are not

interested in the temporal history of an edge, we refer to

it by simply using a triple (u, v, d). Whenever, in turns, we

need to specify the temporal information, we use the pair

((u, v, d), τ(u, v, d)). Moreover, if we write (u, v, d) ∈ E we

assume: τ(u, v, d) �= ∅, i.e. there exist at least one timestamp

t in which the edge (u, v, d) is present, or, in other words,

in which the dimension d connects u and v. Hereafter, we

omit this note in the definitions of our structural measures

when this is not needed.

Also, we use the term dimension to indicate label, and we

say that a node belongs to or appears in a given dimension d

if there is at least one edge labeled with d adjacent to it. We

also say that an edge belongs to or appears in a dimension

d if its label is d. We assume that given a pair of nodes

u, v ∈ V and a label d ∈ L only one edge (u, v, d) may

exist. Thus, each pair of nodes in G can be connected by at

most |L| possible edges. Hereafter P(L) denotes the power

set of L.

B. Connectivity measures for multidimensional networks

Here we define new measures on the multidimensional

structure of networks, and we assume: τ(u, v, d) �= ∅, thus

we omit the temporal information in our measures. This

section defines only a small set of the possible measures that

can be defined over multidimensional networks, and this list

is not meant to be exhaustive, as this is not the purpose of

this paper. However, in Section IV we see how even the

following few concepts can be used effectively to build a

multidimensional predictor.

1) Neighbors: In classical graph theory the degree of a

node refers to its connections in a network: it is defined as

the number of edges adjacent to a node. In a simple graph,

each edge is the sole connection to an adjacent node. In

multidimensional networks the degree and the number of

nodes adjacent to the node are no longer related, since there

may be more than one edge between any two nodes. For

instance, in Figure 2, the node 4 has five neighbors and

degree equal to 7. In order to capture this we define the

following:

Definition 1 (Neighbors): Let v ∈ V and D ⊆ L
be a node and a set of dimensions of a network G =
(V,E, L, T, τ), respectively. The function Neighbors :
V × P(L) → P(V ) is defined as Neighbors(v,D) =
{u ∈ V | ∃(u, v, d) ∈ E ∧ d ∈ D}, where P(V ) denotes

the power set of V . This function returns the set of all the

nodes directly reachable from node v by edges labeled with

dimensions belonging to D.

While this measure might be used directly into the formu-

las of Common Neighbors and Adamic-Adar to adapt their

formulation for the multidimensional setting, we define a

variant of it, aimed at capturing the interplay among the

dimensions w.r.t the exclusivity of the connections.

Definition 2 (NeighborsXOR): Let v ∈ V and D ⊆ L
be a node and a set of dimensions of a network G =
(V,E, L, T, τ), respectively. The function NeighborsXOR :
V × P(L) → P(V ) is defined as

NeighborsXOR(v,D) =
{u ∈ V | ∃d ∈ D : (u, v, d) ∈ E ∧ �d′ /∈ D : (u, v, d′) ∈ E}
It returns the set of neighboring nodes connected by edges

belonging only to dimensions in D.

2) Dimension Connectivity: While the two measures

above are local to nodes, here we define four global mea-

sures on the sets of nodes and edges. To this end we intro-

duce the Dimension Connectivity and Average Correlation
measures on both the sets of nodes and edges.
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Figure 2. Toy example. Solid line is dimension 1, dashed is dimension 2.

Definition 3 (Node Dimension Connectivity): Let d ∈ L
be a dimension of a network G = (V,E, L, T, τ). The

function NDC : L → [0, 1] defined as

NDC(d) = |{u∈V |∃v∈V :(u,v,d)∈E}|
|V |

computes the ratio of nodes of the network that belong to

the dimension d.

Definition 4 (Edge Dimension Connectivity): Let d ∈ L
be a dimension of a network G = (V,E, L, T, τ). The

function EDC : L → [0, 1] defined as

EDC(d) = |{(u,v,d)∈E|u,v∈V }|
|E|

computes the ratio of edges of the network labeled with the

dimension d.

While the two measures above regard the importance that

a single dimension has w.r.t. the connectivity of the network,

we now define other two measures aimed at capturing the

global interplay among dimensions, by looking at their

average correlation.

Definition 5 (Average Node Correlation): Let d ∈ L be

a dimension of a network G = (V,E, L, T, τ). The function

ANC : L → [1/|L|, 1] is defined as

ANC(d) =
∑

d′∈L NJaccard(d,d′)
|L|

where NJaccard(d, d′) is the Jaccard correlation index on

the node sets
|N(d)∩N(d′)|
|N(d)∪N(d′)| , where N(d̄) = {u | ∃ (u, v, d̄) ∈

E}. It computes the average node correlation of a dimension

with all the others.

Definition 6 (Average Edge Correlation): Let d ∈ L be a

dimension of a network G = (V,E, L, T, τ). The function

AEC : L → [1/|L|, 1] is defined as

AEC(d) =
∑

d′∈L EJaccard(d,d′)
|L|

where EJaccard(d, d′) is the Jaccard correlation in-

dex on the edge sets
|E(d)∩E(d′)|
|E(d)∪E(d′)| , where E(d̄) =

{(u, v) | ∃(u, v, d̄) ∈ E}. It computes the average edge

correlation of a dimension with all the others.

Example 1: In Figure 2 the EDC of dimension d1 (solid

line) is 7/12 since it has 7 edges out of the 12 total edges

of the network, while the EDC of d2 (dashed line) is 5/12.

The NDC for d1 is 5/7 and NDC for d2 is 6/7. The AEC

of d1 is (1 + 3/12)/2 = 0.625. For the same dimension,

ANC is (1 + 5/7)/2 = 0.857.

3) Temporal Link Information: Besides the analysis of

the multidimensional structure at both the local and global

levels, we also want to take into account the complete

temporal history of an edge of the network. In order to do

this, we define four different measures. Thus, here we make

use of the τ function.

The first measure simply counts the number of temporal

snapshots in which an edge is present in a dimension:

Definition 7 (Frequency): Let (u, v, d) ∈ E be an edge of

a network G = (V,E, L, T, τ). The function Freq : E →
[1, |T |] defined as

Freq(u, v, d) =| τ(u, v, d) |
computes the frequency of an edge in terms of the number

of temporal snapshots in which it appears.

We can aggregate the above by dimensions, counting the

number of snapshots in which a pair of nodes is connected:

Definition 8 (Over All Frequency): Let (u, v) be two

nodes in V in a network G = (V,E, L, T, τ). We define

OAFreq : V × V → [1, |L| × |T |] as:

OAFreq(u, v) =
∣
∣
∣
⋃

{d∈L|(u,v,d)∈E} τ(u, v, d)
∣
∣
∣

As time has a natural ordering, we may want to be able to

give more (or less) importance to more recent interactions

when predicting new ones. To this end, we define two

weighted measures on the temporal history of an edge:

Definition 9 (Weighted Presence): Let (u, v, d) ∈ E be

an edge of a network G = (V,E, L, T, τ). The function

WPres : E → [1,+∞] is defined as

WPres(u, v, d) =
∑

{t∈τ(u,v,d)} wt

where wt is the weight of the temporal snapshot t. For

simplicity, given the temporal ordering, we assume wti = i.
As done above, we can also aggregate WPres by dimen-

sions:

Definition 10 (Over All Weighted Presence): Let (u, v)
be two nodes in V in a network G = (V,E, L, T, τ). The

function OAWPres : V × V → [1,+∞] defined as

OAWPres(u, v) =
∑

{d|(u,v,d)∈E} WPres(u, v, d)

Example 2: In the toy example in Figure 2, where we

reported also the complete history of each edge in the table,

we have: Freq(4,5,1)=2; OAFreq(4,5)=4; WPres(4,5,1)=5;

OAWPres(4,5)=10.

III. MULTIDIMENSIONAL LINK PREDICTION

A. Problem statement

Given a pair of nodes in an evolving network, the lit-

erature on monodimensional network analysis defines Link

Prediction (LP, hereafter) as the problem of estimating the

likelihood that an edge will form between two nodes [8],

[7]. There can be several ways to reformulate it in the

multidimensional setting. For example, the classical defini-

tion may be preserved as it is, disregarding the dimensions,

only focusing on new connections between any two nodes.

Another possible way is to specify a set of dimensions for

which we want to estimate the likelihood. A more specific

formulation, that we use in the rest of the paper, is estimating

the likelihood that an edge will form between two nodes in a

specific dimension. That is, we add an additional parameter

to the classical definition. More formally we define:

Definition 11 (Multidimensional Link Prediction): Given

a multidimensional network modeled as a multigraph

G = (V,E, L, T, τ), the Multidimensional Link Prediction

problem (from now on, MLP) requires to return a function
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score : V × V × L → [0,+∞[ of scores measuring the

likelihood that any two pairs of nodes will connect in a

specific dimension, in the future.

We now present several possible solutions for MLP, intro-

ducing a list of functions to use as scores. It is clear how,

in analogy with the LP problem in the monodimensional

case, there can be a taxonomy of solutions, divided in

supervised or unsupervised approaches, based on structural

analysis or on the extraction of frequent patterns of evolu-

tion, based on statistical analysis of temporal series, and

so on. In the rest of this section we present solutions

based on the structural analysis of the network. We start

from the multidimensional reformulation of two classical

approaches based on neighborhood (Common Neighbors

and Adamic-Adar), then we introduce other measures to

be taken into account in the final list of scoring functions.

Our resulting solutions are then combinations of supervised

and unsupervised approaches, aimed at capturing all the

possible strong and weak signals of the non-trivial interplay

of multidimensionality and temporal evolution.

B. Predictive models based on structural analysis

We now combine all the available theoretical basic

bricks to build our set of predictors for MLP. For con-

venience, in this section we use the notation N(◦, •)
for Neighbors(◦, •), and, in analogy, NXOR(◦, •) for

NeighborsXOR(◦, •) .

1) Base predictors: We wanted to have basic predictors

for our experiments, and we choose Common Neighbors

[5] and Adamic-Adar [4], as they are among the best w.r.t

predictive performances [8]. We can introduce a multidimen-

sional version of them by using our function Neighbors:

Definition 12 (Multidimensional Common Neighbors):
Let G = (V,E, L, T, τ) be a network and (u, v, d) /∈ E be

a candidate future edge. We define:

Multidimensional Common Neighbors(u, v, d) =
| N(u, d) ∩N(v, d) |

Hereafter, we often use M-CN to refer to this predictor.

Definition 13 (Multidimensional Adamic Adar): Let G =
(V,E, L, T, τ) be a network and (u, v, d) /∈ E be a candidate

future edge. We define:

Multidimensional Adamic Adar(u, v, d) =∑
z∈{N(u,d)∩N(v,d)}

1
log(|N(z,d)|)

Hereafter, we often use M-AA to refer to this predictor.

In the following, instead, we replace Neighbors with

NeighborsXOR, by following the intuition that more so-

phisticated multidimensional information may lead to better

predictive performance. As we see in Section IV, this

intuition was proved to be incorrect in the networks used.

Definition 14 (Multidimensional Common NeighborsXOR):
Let G = (V,E, L, T, τ) be a network and (u, v, d) /∈ E be

a candidate future edge. We define:

Multidimensional Common NeighborsXOR(u, v, d) =
| NXOR(u, d) ∩NXOR(v, d) |

Definition 15 (Multidimensional Adamic AdarXOR): Let

G = (V,E, L, T, τ) be a network and (u, v, d) /∈ E be a

candidate future edge. We define:

Multidimensional Adamic AdarXOR(u, v, d) =∑
z∈{NXOR(u,d)∩NXOR(v,d)}

1
log(|NXOR(z,d)|)

As for above, we use M-CNXOR and M-AAXOR hereafter

to refer to these two predictors, respectively.

2) Multidimensional scores: In principle, it is possible to

define several scores on the basis of the multidimensional

measures presented above. For example, it is possible to

multiply the NeighborsXOR of two nodes in one dimension

to obtain a score, ending up with a Preferential-Attachment

like model [6]. We tried several combinations, but, due

to extremely poor predictive performances as tested during

our experimental stage, we do not report their definition.

According to our experiments, in fact, the multidimensional

information gathered by our measures in the networks used

is not enough to predict new edges. This negative result

is analog to the one obtained by the authors of [7], who

reported that their supervised model was not performing

well when used alone for prediction. In analogy with their

strategy, we tried then to combine the information learned

from the data, with unsupervised model, as we see in 4).

3) Temporal scores: It is possible to define temporal

scores based on modifications of the above measures. We

tried a few of them but, in analogy with the multidimensional

scores, their predictive power when used alone was very poor

on our networks.

4) Combinations: Finally, we can define a scoring func-

tion by combining all the basic bricks presented in our the-

ory. In particular, we can aggregate the information provided

by the baseline models with the information provided by

the multidimensional measures or the temporal ones. This

is exactly the line followed in [7], where the authors combine

the information provided by the model defined by the com-

plete set of frequent evolution rules mined from the network

with the information provided by the baseline models. In

analogy with their paper, we tried several combinations of

our proposed measures. Table I shows the non-XOR versions

of all the solutions we tested. Each line represents which

basic bricks we used for building one scoring function, for

a total of 26 predictors. The basic bricks were combined

by multiplying their scores. Clearly, other aggregates or

combinations are possible and we tried some of them, but,

due to poor predictive power and to lack of space, here we

only report the best ones.

5) Implementation and complexity: All the measures

defined, and the predictors presented, may be implemented

by trivially scanning the list of edges linearly, thus making

the approach scalable (see Section IV for an empirical eval-

uation of scalability). We omit the implementation details

due to lack of space.
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Base
Multidim. Temporal
Measure Measure

M-AA

M-AA NDC
M-AA EDC
M-AA AEC
M-AA ANC

M-AA Freq
M-AA OAFreq
M-AA WPres
M-AA OAWpres

M-AA AEC WPres
M-AA AEC OAWPres
M-AA ANC WPres
M-AA ANC OAWPres

Base
Multidim. Temporal
Measure Measure

M-CN

M-CN NDC
M-CN EDC
M-CN EC
M-CN NC

M-CN Freq
M-CN OAFreq
M-CN WPres
M-CN OAWPres

M-CN AEC WPres
M-CN AEC OAWPres
M-CN ANC WPres
M-CN ANC OAWPres

Table I
TAXONOMY OF THE PROPOSED APPROACHES (NON-XOR VERSIONS)

IV. EXPERIMENTS

In this section we report the results obtained by applying

our predictors on real networks. The predictive performance

is measured via ROC (Receiver Operating Characteristic)

curves computed on the results of the predictors. We use

ROC curves instead of Precision/Recall plots for their better

comparability among different networks and predictors.

All the tests were ran on a server with an AMD Phenom II

X4 processor at 3.2GHz, with 8GB of RAM, running Linux

2.6.35. The predictors were implemented in Java.

A. Datasets

We built two networks coming from different real world

sources: the bibliographic database DBLP1, from which we

extracted a co-authorship network, and the movie database

IMDb2, from which we extracted a collaboration network.

More in details, we built the following two networks:

• DBLP. We extracted author-author relationships if two

authors collaborated at least in one paper. The dimen-

sions are defined as the venues in which the paper was

published. We took only the publications in the most

important 28 conferences in computer science, which

include VLDB, SIGKDD, WWW, AAAI and more. For

the training set we narrowed the temporal span to the

1999-2008 years and chose year 2009 as test set.

• IMDb. We extracted a collaboration network of the

actors involved in Indian movie productions. Two actor

(nodes) are connected by an edge if they took part in

at least one movie together in a given year: as training

set we considered the years from 1999 to 2008 and the

year 2009 as test set. To introduce multidimensionality

we took care, for each actor-actor edge, of the genres

of the movie, ending up with 25 different dimensions.

Table II reports, for each network and set considered, the

number of nodes, edges, and neighbors, reporting for each

of them min, max and average computed over the different

dimensions, and their global values computed disregarding

the multidimensional information (where “gl. avg” is the

average degree).

1http://dblp.uni-trier.de
2http://www.imdb.com

Dataset |V | |E| Neighbors
min max avg global min max avg global min max avg gl. avg

DBLP train. 378 3,891 1,718.3 33,329 560 7,792 3,418.4 95,727 14 77 35.5 5.07
DBLP test 26 1,126 404.8 8,507 13 1,963 672.9 17,496 1 24 12.9 3.87

IMDb train. 9 9,219 1,581.4 12,146 36 310,811 39,568.3 989,208 8 885 228.1 62.84
IMDb test 3 2,181 354.1 2,844 3 36,658 4676,4 116,910 2 161 61.7 31.43

Table II
BASIC STATISTICS FOR OUR NETWORKS

B. Evaluation of the results

We now want to give a quantitative evaluation of the

results. We measure how well M-CN, M-AA and their

XOR versions perform, how the two versions of them

compare, how much their predictive power can be improved

by multidimensional or temporal information, and we want

to see if there are global predictors that globally outperform

all the others.

We applied all the scoring functions as reported in Table

I to our networks. In figure 3 we report the ROC curves

computed on a selection of results (due to lack of space,

we are not able to report all of them). Figure 3 reports

in the first two rows the ROC curves computed in DBLP

by using M-CN and M-AA, multiplied by multidimensional

information (first column), temporal information (second

column) or both of them (last column). The second row

report the same, for IMDb. The last row of the figure report

different sets of plots. In the first two column of Figure 3

we report the comparison between the M-AA and M-CN on

DBLP and IMDb, respectively, while in the third we group

all the four multidimensional base predictors on the DBLP

network. In Figure 4, we report the comparison between all

the four multidimensional base predictors on IMDb, and two

examples of the performances given by the predictors based

on NeighborsXOR.

First, by comparing figures 3 and 4, we report a negative

result: the XOR variant of the Neighbors function is de-

stroying part of the information about the neirghbors. This

can be seen by the scale on the y axis of all the plots in

Figure 4 (in Figure 4, due to lack of space, we report only

the best results obtained by the XOR versions). Due to the

definition of our measures, the XOR is reducing the number

of total predictions issued. This is very clear from the plots

in figures 3(o) and 4(a), that compare the normal and XOR

versions of the basic predictors for both the networks.

Second, the temporal scores used as multiplier for the base

predictors are able to restore (note: not in terms of number

of predictions, but in terms of precision of them) part of the

predictive power lost with the XOR, which can be addition-

ally recovered by multiplying also by the multidimensional

measures. However, the XOR based prediction is globally

very poor compared to the normal one.

Third, consider the plots in figures 3(m) and 3(n). Here

we report the comparison between M-AA and M-CN for the

two networks. As we see, while in DBLP the global better

performance of the Adamic-Adar predictor is validated, this

is not true for IMDb, where M-CN is performing better. A
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Figure 3. ROC curves computed on the predictors based on Neighbors
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Figure 4. ROC curves computed on the predictors based on NeighborsXOR

possible explanation of this might be found in the structure

of the two networks. In addition to the global more dense

structure of IMDb, we also note that this network tends to

have more cliques, that are also larger, w.r.t. DBLP, given

that one movie usually joins together more persons than

one scientific paper. In this scenario, the prevalence of the

Adamic-Adar intuition (more importance to rarer neighbors)

over the Common Neighbors (higher score to nodes with

more neighbors in common) seems to lose its strength. In

turns, M-CN for IMDb seems to be difficult to boost by

means of multidimensional or temporal information, as we

can see in the fourth row of Figure 3, that, on the other

hand, destroy part of the predictive power of M-CN.

Next, consider the first two rows of Figure 3. In DBLP, the

predictive power of both M-CN and M-AA can be boosted

by adding multidimensional or temporal information, with

an even more powerful conjunction (see (c) and (f)).

Regarding which multidimensional or temporal measures

are able to help the prediction, we see that: for the first, ANC

and AEC globally tend to add predictive power (especially

ANC), while NDC and EDC globally lower the precision;

for the second, it is clear from all the plots that the weighted

version of all the measures is more accurate in capturing the

temporal information, and that the OverAll versions of the

measures behave better than the normal ones.

Globally speaking, the best predictors in the networks

used result to be the conjunction of OAWpres, ANC, and

one of M-CN and M-AA.

C. Comparison with the random predictor

In analogy with previous works [8], we also compare the

performance of our predictors with a random one, used as

baseline. The performance is given by the precision of the

predictive model, and for the random predictor it can be

calculated as:

Precisionrandom = |Etest|
|L|× |V |(|V |−1)

2

.

Given that all the introduced predictors are based on com-

mon neighborhood, they all output the same set of predicted

links, even if the scores might be different. For this reason,

we can calculate a single value of performance for all the

proposed predictors:
Precision = TruePositive

TruePositive+FalsePositive

The boost of the performance for the networks analyzed,

computed as the ratio Precision
Precisionrandom

, was 35,150.4 for

DBLP, and 7.1 for IMDb. As we see, the gain is much higher

for DBLP, which is a much sparser network (see Table II).

D. Scalability

Last open question is how much scalable is our approach.

In order to answer it, we built a few network with different

node and edge sizes. In particular, we took the training set of

IMDb (the largest network), and produced 5 different sub-

networks. We started taking the nodes and edges belonging

to only 5 dimensions, producing a first small network, then

we added 5 dimensions (with the corresponding nodes and

edges) at each step, until the entire network was added.Table

III reports the basic statistics (only number of nodes and

edges) of the subnetworks produced in this way. We decided

to divide the 25 dimensions in such a way that the number

of edges would have increased (almost) uniformly. On these

networks, we computed all the measures, the predictors,

and the aggregations as reported above. Figure 5 reports

the running times (in minutes) for the experiments. Since

we had many aggregations, instead of reporting the total

computing time, we split it into four steps: computing the

multidimensional measures (first bar in every block of four);

computing the multidimensional base predictors M-CN, M-

CNXOR, M-AA and M-AAXOR (second bar); computing

all the aggregations (third bar); and computing the temporal

measures. As we see the running time grows linearly with

the number of edges, with a maximum time of 30 minutes.

According to their definition, and to this empirical evalu-

ation, our proposed predictors are scalable, and the required

computing time grows linearly with the number of edges.

Dimensions |V | |E|
5 9,927 378,675

10 10,987 563,497

15 11,573 711,097

20 11,716 843,506

25 12,146 989,208

Table III
BASIC STATISTICS OF DIFFERENT SUBNETWORKS OF IMDB
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V. RELATED WORK

Many papers studied the problem of Link Prediction,

trying both supervised and unsupervised approaches. Among

the latter, [6] presented a solution based on the preferential

attachment principle, while [4] and [5] introduced models

based on the quantitative characteristics of common neigh-

bors. A survey on unsupervised approaches to LP is [8],

in which the authors empirically compare many different

models. Two supervised approaches are the ones proposed

in [7] and [9], where the first one allows also for the

prediction of new nodes. In [10] the authors presented a

link prediction framework that uses multiple data sources,

while [11] proposed an analysis through the use of some

graph proximity measure and weight of the existing links.

In [12] the authors introduced a semi-supervised learning

model for the link prediction problem in multi-relational

networks. Like multidimensional networks, multi-relational

ones allow different types of interactions between each pair

of nodes. However, this model does not allow for multiple

simultaneous interactions between two nodes.

Other authors have addressed different problems regarding

multidimensional networks. The authors in [13] analysed the

degree distributions of the various dimensions, highlighting

the need for analytical tools for the multidimensional study

of hubs. The authors of [14] introduced a framework for the

analysis of multidimensional networks, defining a large set

of measures capturing the interplay of the dimensions both

at the global and at the local level.

However, to the best of our knowledge, the literature still

lacks a definition of the LP problem in multidimensional

networks, together with possible solving approaches. In this

work, we overcome to this, by defining MLP and several

classes of predictors.

VI. CONCLUSIONS

We have formulated the Multidimensional Link Predic-

tion problem, and introduced different classes of scalable

predictors aiming at capturing the underlying model of

node interactions, the multidimensional information and the

complete temporal history of a link in the network. We have

shown that it is possible to predict new links in multidi-

mensional networks, and our results confirm the literature

of monodimensional link prediction: although unsupervised

models such as the Adamic-Adar or the Common Neighbors

have an high influence in the evolution of a network, their

accuracy as predictors may be boosted by the introduction

of supervised models (multidimensional and temporal mea-

sures) to combine with them, as weaker signals of evolution.

We have supported our theory with empirical evaluation on

large, real world networks, on which we have also confirmed

the scalability of the proposed approach.
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