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Abstract—In many applications there is a need to monitor
how a population is distributed across different classes, and to
track the changes in this distribution that derive from varying
circumstances; an example such application is monitoring the
percentage (or “prevalence”) of unemployed people in a given
region, or in a given age range, or at different time periods.
When the membership of an individual in a class cannot be
established deterministically, this monitoring activity requires
classification. However, in the above applications the final goal
is not determining which class each individual belongs to, but
simply estimating the prevalence of each class in the unlabeled
data. This task is called quantification. In a supervised learning
framework we may estimate the distribution across the classes
in a test set from a training set of labeled individuals. However,
this may be suboptimal, since the distribution in the test set
may be substantially different from that in the training set
(a phenomenon called distribution drift). So far, quantification
has mostly been addressed by learning a classifier optimized
for individual classification and later adjusting the distribution
it computes to compensate for its tendency to either under-
or over-estimate the prevalence of the class. In this paper we
propose instead to use a type of decision trees (quantification
trees) optimized not for individual classification, but directly for
quantification. Our experiments show that quantification trees
are more accurate than existing state-of-the-art quantification
methods, while retaining at the same time the simplicity and
understandability of the decision tree framework.

I. INTRODUCTION

In many real-world applications there is a need to estimate
the distribution of a population across different classes, and
to track the changes in this distribution that may derive
from varying circumstances. Example such applications are
estimating the percentage (or “prevalence”) of unemployed
people across different geographical regions, or age ranges,
or genders, or across different time period; or estimating the
prevalence of positive comments in a population of textual
comments on a given product; or estimating the prevalence of
calls related to a specific issue in a population of phone calls
to tech support.

This problem is closely related to density estimation [22];
a classic, textbook example of density estimation is estimat-
ing the prevalence of white balls in a large urn containing
white balls and black balls. However, the above-mentioned
applications are different from the ones usually addressed
in classic density estimation. For instance, the above “urn”
example assumes that, when we pick a ball from the urn, we
can deterministically assess whether the ball is black or white,

by simple visual inspection. The case of textual comments on
products is different, since assessing whether a given comment
is positive or negative is not a deterministic operation, since
it depends on subjective judgment. Another key difference
is the fact that the density estimation problem arises from
the fact that in many applications it is practically impossible
to assess class membership for each single individual (e.g.,
we do not want to inspect every single ball in the urn);
however, in the case of product reviews mentioned above it is
feasible to analyze every single individual, since this is done
automatically.

These differences clearly indicate the existence of a task
different from density estimation, and characterized (a) by the
need to assess class prevalence when class membership cannot
be established deterministically, and (b) by the fact that all
individuals that make up the population can be analyzed. Both
facts indicate that our task is closely related to classification,
a task in which facts (a) and (b) both hold. However, the
goal of classification is different from the one we have set
ourselves, since in classification we are interested in correctly
estimating the true class of each single individual. We are
instead interested in classifying our individuals with a different
goal, that of estimating class prevalence; in the literature, this
task has been called quantification [5], [8], [9], [24], [26].

Classification and quantification are different because,
while a perfect classifier is also a perfect quantifier, not
necessarily a good classifier is also a good quantifier. For
instance, a binary classifier for which FP = 20 and FN = 20
is a worse classifier than one for which, on the same test set,
FP = 0 and FN = 10, but is a better quantifier1; indeed, it
is a perfect quantifier, since FP and FN are equal and thus
compensate each other, so that the distribution of the test items
across the class and its complement is estimated perfectly.

So far, quantification has mostly been addressed by learn-
ing a standard classifier (i.e., optimized for individual classifi-
cation) followed by a post-processing phase, where the distri-
bution resulting from the classifier is adjusted to compensate
for the estimated tendency of the classifier to either under- or
over-estimate the prevalence of the class. The basic idea of
this paper is instead to take quantification into account not
only at post-processing time, but also at learning time, by
designing a specific learning methodology that is optimized

1As usual, TP , FP , FN , TN , indicate the numbers of true positives,
false positives, false negatives, true negatives, respectively.
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for quantification, instead of classification. To this purpose, we
directly operate on the learning algorithm and propose a new
type of decision tree, called a quantification tree, optimized
not for individual classification, but directly for (collective)
quantification.

Our experiments show that the use of quantification trees
yields more accurate quantification than existing state-of-the-
art quantification methods, while retaining at the same time
the simplicity and understandability that are typical of the
decision tree framework. Moreover, our quantifiers exhibit
better resilience with respect to sharp changes of the class
distribution in the test set, thus enabling more reliable estimates
even in situations characterized by high “distribution drift”.

We believe that the potential impact of robust quantification
methods, such as those introduced in this paper, is high,
especially in big data analytics and official statistics. One
promising approach is the use of labelled data obtained from
surveys to learn a reliable quantifier of a phenomenon, and then
apply the quantifier to big data to monitor the phenomenon
across different geographical areas or time ranges, even if the
distribution varies substantially across space and time. An ex-
ample of this approach is the socio-meter of urban population
proposed in [11], for estimating the proportion of city users
that fall into three categories: residents, commuters, visitors.
In this study, a massive dataset of mobile phone call detail
records (CDR) is used to characterize the call profiles of the
people observed in an urban space along a few weeks. The call
profile of a city user captures how often the person calls during
weekdays or weekends across the entire observation period, as
well as how often during early morning hours, working hours,
or night hours. By means of a focused campaign, a small
fragment of the available call profiles are labelled with one
of the three classes; a classifier is then learned on the labelled
fragment of dataset; finally, the classifier is applied to the entire
population of mobile phone users in the dataset, in order to
continuously estimate the proportion of residents, commuters
and visitors in town, at any moment in time. Remarkably, the
call profiles of the three classes of city users are stable in time:
residents call essentially anytime, commuters tend to call only
during weekdays and working hours, visitors call sporadically.
Instead, the proportion among the three categories tend to vary
significantly over time, and monitoring these variations is an
important information for planning urban services, such as
waste management, energy supply or public transport. Clearly,
an accurate and robust quantification method is at the heart of
this very promising approach to monitor social indicators by
means of big data — especially in presence of high distribution
drift with relatively stable profiles of class membership.

The remainder of the paper is organized as follows. Section
II introduces background notions and defines the quantification
problem. Section III describes our approach to customizing
decision trees for quantification. In Section IV we propose the
methods for the learning of decision trees for quantification.
Section V shows the empirical evaluation of our methods. In
Section VI we discuss the related works and finally, Section
VII concludes the paper.

II. QUANTIFICATION

Quantification is closely related to classification, but their
final goals differs. Quantification aims at finding the class

frequencies in a set of unlabeled data, while classification
aims at determining the class of each specific item in the
same dataset. In other words, a quantifier does not care about
perfectly predicting the class of a single item, but to guess the
global trend of the classes in a new set of data.

In this paper, we address the quantification problem, and
propose a method based on decision trees that can be applied to
binary and multiple class labels. In the following, we formally
define the quantification problem and introduce the basic
notions. Then, we review the few methods for quantification
proposed in the literature.

A. Problem Definition

Given a collection of records D = {r1, . . . , rm}, where each
rj has a class label rj .class belonging to a set of classes
C = {c1, c2, . . . , cn}, a classifier f is a function f : D → C
that assigns a class label ci ∈ C to each record rj ∈ D.

The actual frequency of a class ci with respect to a

dataset D is freqD(ci) =
|{rj∈D|rj .class=ci}|

|D| . The estimated

frequency using the learnt function f , namely the result of the

classifier, is f̂ reqD(ci) =
|{rj∈D|f(rj)=ci}|

|D|

We denote by Tr the training set on which we train our
model for quantification aims, while we use Te to denote the
test set on which we test the performance of our quantifier.

We use the standard notation to indicate the set of true
positives (TP ), false positives (FP ), true negatives (TN ) and
false negatives (FN ) of a binary classifier. We use tpr =

TP
TP+FN to denote the true positive rate and fpr = FP

TN+FP
to denote the false positive rate.

Now we are ready to formally define the quantification
problem.

Definition 1 (Quantification Problem): Let C =
{c1, c2, . . . , cn} be a set of class labels. Given a partition of
the labelled dataset D in training set Tr and test set Te and a
classifier f learnt from Tr, the quantification problem consists
in finding the best estimation of the class label distribution
in Te, i.e., ∀ci ∈ C we want to minimize the difference
between the actual frequency freqTe

(ci) and the estimated

one f̂ reqTe
(ci).

The following example highlights the final goal of the
quantification task.

Example 1: Consider the training set in Figure 1 (left)
of 65 records with three nominal attributes (“sex”, “marital
status” and “race”) and a class attribute with two possible
values (“employed” and “unemployed”). The number (n)
represents how many times the combination of values occurs.

Now, consider the test set in Figure 1 (right) composed of
145 instances, where 105 belongs to the class “unemployed”
and 40 to the class “employed”.

Standard classification uses the training set for learning a
classifier capable to accurately guess the class of each record
of the test set. As an example, a good classier f may yield the
following confusion matrix, representing FP , FN , TP and
TN in Table I.

529



Sex Marital Status Race Class

f yes white employed (10)

m yes white unemployed (12)

f yes notwhite unemployed (5)

m no white unemployed (5)

m no white employed (15)

m no white unemployed (4)

m yes notwhite unemployed (5)

m no notwhite unemployed (5)

f no white employed (4)

Sex Marital Status Race Class

f yes notwhite unemployed (30)

f yes notwhite employed (20)

m no white unemployed (15)

f no white employed (20)

f no notwhite unemployed (60)

Fig. 1. Training set (left) and Test set (right)

unemployed employed

unemployed 90 15

employed 40 0

TABLE I. CONFUSION MATRIX ON THE TEST SET: ROWS ARE ACTUAL

CLASS LABELS, WHILE COLUMNS ARE PREDICTED CLASS LABELS

The quantification task tries to estimate the distribution of
the two classes; an optimal quantifier in this case returns an
estimated frequency of class “unemployed” of 72.41% and one
of class “employed” of 27.59%. While the estimation that can
be inferred from the confusion matrix in Table I is 90+40

145 =
89.65% for class “unemployed” and 15

145 = 10.34% for class
‘employed”.

B. Quantification methods via classification

The typical approach in the literature for addressing the
quantification problem is based on standard classification. The
idea presented in the existing works [7], [8], [9] is to use a
standard classifier and then post-processing the results with
specific methods to improve the quantification accuracy.

The proposed methods that solve quantification via clas-
sification address the case of binary class label, but they can
be extended to multi classes. In [9] the following methods are
introduced:

Classify and Count. This simple method generates
a classifier from the training set Tr, classifies the
unlabeled records in Te, and estimates for each class
ci its frequency freqTe(ci) by counting the fraction
of records in Te that belong to ci. We indicate the
estimation computed by this method by freqCC

Te
(ci).

Adjusted Classify and Count. This methods im-
proves the result obtained by the previous by ad-
justing the quantification obtained by Classify and
Count freqCC

Te
(ci) with the information about the true

positive rate and false positive rate with respect to the
training set:

freqAC
Te

(ci) =
freqCC

Te
(ci)− fprTr

tprTr
− fprTr

. (1)

However, standard classifiers, optimized for predicting the
class of single records, are not optimal for quantification.
Indeed, we observe that, a good classifier is one with a very
small number of FN and FP . While the key point of a good
quantifier is to balance the errors of classification, hence a
classification model with a equal number of FP and FN
is perfect because this leads to a correct distribution of the
classes.

Example 2: Continuing with Example 1, a quantifier that
uses a standard classifier with the confusion matrix in Table I
will give the following result by using the Classify and Count
approach: freqCC

Te
(unemployed) = 90+40

145 = 89.65%. A

unemployed employed

unemployed 75 30

employed 30 10

TABLE II. CONFUSION MATRIX ON TEST SET OF A QUANTIFIER.

better quantifier can be obtained using an ad-hoc classifier op-
timized for quantification, such as one which yields the confu-
sion matrix in Table II. In this case freqCC

Te
(unemployed) =

75+30
145 = 72.41%, which perfectly estimates the real frequency

of the class. This is due to the fact that false positives and false
negatives compensate, and therefore the column totals coincide
with those of a perfect classifier with FP = FN = 0. Notice
that the classifier in Table II is less accurate than that in Table
1, albeit the latter is an optimal quantifier.

Moreover, another problem in the use of standard classifiers
for quantification is due to the fact that usually supervised
learning algorithms are based on the assumption that both
training set and test set have the same distribution. However,
often in real-world scenarios this assumption is not true and
clearly, the quantification task is particularly useful in cases
where the distribution changes.

III. DECISION TREES FOR QUANTIFICATION

In this paper, we radically depart from the use of standard
classification models for quantification and propose to directly
learn a model optimized for quantification. To this purpose, we
customize decision tree learning [3], [18] for quantification.
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We call this type of trees quantification trees. Our idea is to
use a quantification tree instead of a standard classifier in the
methods for quantification, presented in Section II-B.

Providing a method for building a decision tree directly
optimized for quantification means: (1) defining a measure for
evaluating the goodness of a split on attribute at a decision
node in order to select the best split; and (2) defining a
stopping condition that is necessary to terminate the tree-
growing process.

A. Measures for Selecting the best split

The definition of a measure of evaluation of a split is the most
important point for obtaining a decision tree optimized for
quantification. Intuitively, we need to develop a new feature
selection method for the split at a decision node that selects
the attribute providing the best balance between false positive
and false negative errors in the tree. We call this measure
quantification accuracy and we can measure it in different
ways. In this paper we propose two approaches.

a) Classification Error Balancing: Given a possible
split, for each class ci ∈ C we compute the difference between
the number of false positive (FPci ) and the number of false
negative (FNci):

Eci = |FPci − FNci |.
This measure describes the total number of instances clas-
sified in a wrong way with respect to class ci. For the
quantification goal Eci = 0 is the best result. After the
split we have a new vector QE1 for the tree, where each
element i represents the error of quantification for the class
ci: QE1 = [Ec1 , Ec2 , . . . , Ecn ]. A measure of quantification
accuracy is the L2-norm ||QE1||2 of the error vector QE1.

b) Classification-Quantification Balancing: The previ-
ous method takes into consideration only the goal of the
quantification task. An alternative measure may try to find a
trade-off between classification and quantification. To this end,
given a possible split, for each class ci ∈ C we compute the
following equation

Eci = |FP 2
ci −FN2

ci | = (|FPci −FNci |)× (|FPci +FNci |)

where Eci represents the error of classification with respect to
class ci. Clearly, we want low values for Eci that intuitively
means a low value for (|FPci−FNci |) (i.e., a good quantifier)
and a low value for (|FPci + FNci |) (i.e., a good classifier).
After the split we have a new vector QE2 for the tree, QE2 =
[Ec1 , Ec2 , . . . , Ecn ]. Also in this case we use the L2-norm
||QE2||2 of the error vector QE2 for measuring quantification
accuracy.

B. Goodness of a split & Stopping Criterion

To determine the goodness of the split we need to compare
the quantification accuracy before splitting (at parent node)
with the quantification accuracy after splitting (at child node).
The larger their difference, the better the test condition. The
gain, Δ, is a criterion that can be used to determine the
goodness of a split:

Δ = ||QEparent
r ||2 − ||QEchild

r ||2.

where QEparent
r denotes the quantification error before the

split and QEchild
r the quantification error after the split. Here,

r is 1 if we use the Classification Error Balancing method
and 2 if we use the Classification-Quantification Balancing
method. Clearly, for building a good decision tree the best
choice is the selection of a test condition that maximizes the
gain Δ.

As explained above, to terminate the tree-growing process we
need to define a stopping condition. We base our stopping
decision on the gain value: if the gain Δ is not greater than
zero there is no possible split for the decision node, therefore
the node is a leaf of the final tree.

IV. QUANTIFICATION TREE LEARNING

In the following we provide two methods for solving the
quantification task by quantification trees. The first one con-
structs a decision tree by recursively selecting the best attribute
to split the data and expanding the leaf nodes of the tree
until the stopping criterion is met (Section IV-A). The second
method adopts the Random Forests technique [2] introduced
for classification, making it targeted to quantification (Section
IV-B).

A. Recursive Quantification Tree Learning

The recursive method for quantification tree learning is detailed
in Algorithms 1 & 2. Algorithm 1 takes as input the training
set Tr and returns a quantification tree. It recursively selects
the best attribute to split the data and expands the leaf nodes
of the of the tree until there is no split that leads to a positive
gain. In particular, Algorithm 1 computes the initial vector

Algorithm 1 BuildQuantifier(Tr)

Require: Tr: training set
Ensure: the quantification tree

1: for each c in {Classes} do
2: QEr[c]← |FPc − FNc|;
3: end for
4: QAccuracy←UPDATEQACCURACY(QEr);
5: //build the tree
6: return root←BUILDTREE(Tr, QEr,QAccuracy)

of quantification errors QEr and hence, the corresponding
quantification accuracy ||QEr||2. Then, it calls the BuildTree
Algorithm (Algorithm 2) for creating the tree.

The first action of the BuildTree algorithm is to determine
which attribute should be selected as test condition for splitting
the training set. The findBestSplit() function performs that task.
As previously stated, the choice of attribute depends on the
evaluation of quantification accuracy measure that determines
the goodness of a split. Clearly, if the split does not lead to a
positive gain (Δ ≤ 0) then the node becomes a leaf of the tree
and the algorithm assigns to it the majority class (Classify()
function); otherwise, after splitting the data, it updates the
vector describing the quantification errors (QEr), computes
the new quantification accuracy ||QEr||2 and recursively calls
the function.
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Algorithm 2 BuildTree(Tr, QEr, QAccuracy)

Require: Tr: training set, QEr: quantification error vector of
classes, QAccuracy: 2-norm of the error vector QEr

Ensure: Node
1: FINDBESTSPLIT( );
2: if � split then
3: leaf←CREATENODE( );
4: leaf.label← CLASSIFY(Tr)
5: return leaf;
6: else
7: Data←split the dataset;
8: QEr ←UPDATEQEr( )
9: QAccuracy←UPDATEQACCURACY(QEr);

10: root←CREATENODE( );
11: let V be a possible outcome of FINDBESTSPLIT( );
12: for each v in {V} do
13: child←BUILDTREE(v.Data,QEr,QAccuracy);
14: add child as a descendent of root and label the edge

(root→child) as v
15: end for
16: end if
17: return root;

B. Random Forests

We propose an alternative quantification tree learning algo-
rithm for quantification by decision trees. The basic idea
is to use a variant of Random Forests [2] for applying the
well-known Wisdom of the crowd theory [12], [23]. Wisdom
of the crowd is a sociological theory stating that to answer
a question is better the collective opinion of a group of
individuals rather than a single expert. An intuitive explanation
for this phenomenon is that there is noise associated with
each individual judgment, and taking the average over a large
number of responses tends to cancel the effect of this noise.
Thus, achieving better predictions. The work in [23] provides
some criteria that guarantee that the theory works:

• each individual has a different opinion;

• the opinion of a person does not have to influence the
other individuals;

• nobody has to be a leader;

• the judgments have to be aggregated for obtaining a
final result.

Now the question is: how do we apply the Wisdom of the crowd
theory in our setting? We propose to use the basic idea of ran-
dom forests for decision trees. This class of methods combines
the prediction made by different decision trees, where each
tree is generated by using a set of independent random vectors.
These vectors are generated by a fixed probability distribution.
Typically, each tree gives a specific prediction and the final
result is the prediction with the major number of votes. Our
idea instead is to use quantification trees instead decision trees
and the final prediction is given by averaging the estimations
of all trees.

A skeleton of the algorithm that combines a Random
Forests approach with the Wisdom of the Crowd theory is pre-
sented in Algorithm 3. The input of the this algorithm consists

in: the whole training set Tr, the number of quantification trees
k to be built and the number of records of each training set for
constructing each tree. This dimension of each training set is
expressed as a percentage p of Tr. The algorithm returns the
set of quantification trees that can be used for the quantification
task.

The procedure for selecting the data for learning each tree
is as follows. Suppose that the number of features of the
original training set is d. We construct k different quantification
trees and for the construction of each tree we randomly take
log2 d + 1 features from the original training set. In other
words, first we select p% of records from the original training
set and then, we select only log2 d + 1 random features. In
this way, we obtain the training set Tri , that is used for
building a quantification tree as described in the previous
section. Intuitively, the data Tri simulate the knowledge of an
individual that uses it for expressing an opinion. The different
Tri express the diversity of knowledge that each participant in
the crowd of quantifier has.

Finally, given a test set Te, each quantifier Φi returns
for each class cj ∈ C = {c1, c2, . . . , cn} an estimation

of its frequency (freqΦi

Te
(cj)) using the formula (1) and the

recursive algorithm; then, it returns the frequency estimation
as the average of the estimations of all quantifiers; in formula

∀j = 1, . . . , n freqTe
(cj) =

∑k
i=1 freq

Φi
Te

(cj)

k .

Note that, the building of the quantification tree set com-
posing the forest is completely parallelizable in m ≤ k sites.
That interesting property allows generating an high number of
trees (opinions) exploiting in this way as much as possible the
Wisdom of the Crowd theory.

Algorithm 3 Random Forest Quantifier

Require: Tr: training set, k: number of quantification trees,
p: percentage of records of the training set Tr.

Ensure: Set of quantification trees
1: for i=1 to k do
2: Generate a training set Tri from Tr with size p w.r.t.
Tr;

3: Select randomly log2 d+1 features F from the original
data ;

4: generate a quantifier Φi from Tri and F ;
5: end for

V. EXPERIMENTS

We now present our experimental findings. We used three
datasets: Adult, Bank and Magic2.

Adult is composed by a clean set of records extracted from
the 1994 U.S. census data. It contains 32561 instances defined
by 14 attributes. The binary class label represents the income
level of the individual respondents (<= 50K or > 50K); over
the whole dataset the latter class (the rich) has a frequency of
24.08%.

Bank Marketing is composed by data from a telephone
marketing campaigns of a Portuguese bank: clients were

2Datasets are available in the UCI Machine Learning repository website:
http://archive.ics.uci.edu/ml/
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contacted to asses their intentions regarding the subscription
of a proposed bank deposit. The dataset is composed by 45211
records and 17 attributes: 88.30% of the contacted clients fall
in the “no” class.

MAGIC Gamma Telescope: is composed by data of
high energy gamma particles in a ground-based atmo-
spheric Cherenkov gamma telescope: the class variable defines
whether an energy particle is a gamma (signal) or an hadron
(background). The dataset is composed by 19020 records
and 11 attributes: 35.16% of the energy particles fall in the
“hadron” class.

Table III summarizes the main information about the used
datasets.

Name Record Tr Record Te Class label Frequency

Adult 8000 4000 > 50K,<= 50K > 50K 24.08%

Bank 4450 1100 yes, no no 88.3%

Magic 5630 1408 gamma, hadron hadron 35.16%

TABLE III. DATASETS.

A. Evaluation

The methodology used to evaluate the accuracy of a quantifier
differs substantially from that ones used to evaluate a classifier:
the main reason is that, for the latter, the prediction given for
a single instance could be considered proper or not indepen-
dently from the ones of others instances belonging to the same
test set whereas quantification requires a collective evaluation.
In our case the focus is on the distribution of the classes:
while a classifier is well suited test and the training sets with
similar class distribution, a quantifier needs to be resilient to
distribution changes. To evaluate the stability of our proposed
methods w.r.t. distribution drift we set up the following exper-
imental protocol: for each dataset we fixed the cardinality of
the training and test set (i.e. Adult 8000 and 4000, Bank 4450
and 1100, Magic 5830 and 1408 respectively) and built 19 new
training and test sets by varying the class distribution (from
0.05 to 0.95), preserving the fixed cardinality; in the final step
each test set was used to evaluate the quantifiers learned upon
all training sets.

In order to evaluate the accuracy of a quantifier we need

to compare f̂ reqTe
(ci), the frequency computed for the class

ci, with freqTe(ci), its actual frequency. Different measures
have been used in the literature for measuring quantification
accuracy: the most convincing among the ones proposed so far
is the one used by Forman in [9], which uses normalized cross-
entropy, better known as Kullback-Leibler Divergence (KLD),
defined as:

KLD
(
freqTe(ci)||f̂ reqTe(ci)

)
=

n∑
i=1

freqTe(ci) log
freqTe(ci)

f̂ reqTe
(ci)

.

KLD is introduced in order to evaluate the information loss
when f̂ reqTe

(ci) is used as approximation of freqTe
(ci). It

ranges in the interval [0,+∞): assumes value 0 when the two
frequencies are equal for each Ci and tends to +∞ when their

values diverge. If f̂ reqTe
(ci) = 0 for at least one class, KLD

is not defined: for this reason, as in [9], we add a small amount

ε (set to
|Te|
0.5 ) to both nominator and denominator in the log

function.

The experiments were performed on a Quad Core Intel
i7 64 bits @ 3.2 GHz, equipped with 8 GB of RAM and
with a kernel Linux 3.0.0-12-generic (Ubuntu 12.04). The
code, both for the introduced quantifiers and the baseline (i.e.,
Forman’s CC and AC) was developed in Java using Weka
(ver. 3.6.9). Table IV reports the legend for the acronyms of
the various quantifiers used in the following discussion. Note
that, we apply the AC post-processing also to our quantifiers
because this post-processing, able to improve the quantification
accuracy of a general classifier, in our case permits to reach
more and more precise estimations.

We have used 10-fold cross-validation to estimate the two
quantities fprTr and tprTr . We have run experiments with
C4.5, RFC4.5 and SVM with the parameters set at their
default values.

For each dataset, given a training set, we evaluated the
accuracy of the quantifiers over all 19 test sets: results are
shown, in an aggregate, in Table V (Adult), VI (Bank) and VII
(Magic). We reported, for each quantifier, mean μ and variance
σ2 of KLD of predicted and actual quantification, obtained
by fixing a training (resp., test) and varying the test (reps.,
training). Three cases H, M and L of different degrees of class
distribution unbalance were defined, adopting the following
criterion:

• H: training (resp., test) sets with highly unbalanced
class distributions (i.e. [0.05,.15] and [0.85,0.95]);

• M: training (resp., test) sets with moderate unbalanced
distributions (i.e. [0.2,0.3] and [0.7,0.8]);

• L: training (test) set with low unbalanced distribution
(i.e. [0.35,0.65]).

The idea is to analyze two different characteristics of the com-
pared quantifiers: (i) by fixing the training and computing the
average of the KLD w.r.t. test sets with different distributions,
we want to understand which quantifier build the more resilient
model given a specific distribution of the initial data, (ii) by
fixing the test and computing the average of the KLD obtained
varying the models used to quantify it, we want to identify
the overall accuracy for each quantifier given the real class
distribution of the target data.

1) Comparison of Decision-Tree Based Models: A first
analysis regards the accuracy of the proposed methodologies.
Based on the values reported for both Adult and Bank datasets
we observe how, in general, all our quantifiers that exploit an
adjusted classify and count (AC) strategy behave better than
the ones relying only on classify and count (CC). In particular
we can notice how random forest boosting, applied both to
EB and CQB, led to the highest accuracy and stability when
variations in distribution of the data occur (either when the
training or the test were fixed). Comparing our quantifiers
with C4.5 reveals that neither exploiting an AC post-processing
nor random forest boosting are able to reduce the gap from
our top methods. Classification trees become more reliable
when class distribution tends to be balanced: even in this case,
however, trees optimized to reduce quantification error led to
considerably lower values of KLD.
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Identifier Description

AC(QEB) Tree with Classification Error Balancing

AC(QCQB) Tree with Classification & Quantification Balancing

AC(C4.5) Classification Tree

AC(SVM) Forman’s AC SVM

Identifier Description

AC(RFEB) Random Forest of AC(QEB)

AC(RFCQB) Random Forest of AC(QCQB)

AC(RFC4.5) Random Forest of AC(C4.5)

TABLE IV. ACRONYMS USED FOR THE DIFFERENT QUANTIFIERS. FOR OUR QUANTIFIERS WE REPORT ONLY THE ADJUSTED CLASSIFY AND COUNT

LABELS (AC): CC ONES FOLLOWS THE SAME NAMING LOGIC (I.E., CC(QUANTIFIER NAME)).

Training fixed Test fixed

H M L

Method

AC(QEB)

AC(QCQB)

AC(RFEB)

AC(RFCQB)

CC(QEB)

CC(QCQB)

CC(RFEB)

CC(RFCQB)

AC(C4.5)

CC(C4.5)

AC(RFC4.5)

CC(RFC4.5)

AC(SVM)

CC(SVM)

μ σ2

0.0156 0.0033

0.0272 0.0031

0.002 8.98E-7

0.002 1.39E-7

0.3534 0.0167

0.3098 0.0178

0.4356 0.029

0.461 0.0295

0.014 3.79E-5

0.31 0.0123

0.2939 0.0083

0.2973 0.0085

0.0156 1.15E-5

0.6367 0.0118

μ σ2

0.0045 2.02E-5

0.0073 1.69E-5

0.0003 1.98E-8

0.0004 3.84E-9

0.12 0.0115

0.08 0.0131

0.1506 0.0197

0.1697 0.0195

0.0052 8.04E-6

0.1051 0.0082

0.1007 0.0051

0.1019 0.0053

0.0006 3.24E-6

0.1096 0.0084

μ σ2

0.0897 3.38E-4

0.0098 6.56E-7

0.0002 1.04E-8

0.003 9.77E-10

0.1147 0.006

0.044 0.0087

0.0907 0.0125

0.0896 0.013

0.0033 2.66E-6

0.0452 0.006

0.0412 0.0036

0.0419 0.0037

0.0003 8.04E-7

0.0427 0.0062

H M L

μ σ2

0.0409 0.003

0.0297 6.54E-7

0.0013 6.48E-10

0.0012 1.37E-7

0.2938 0.0183

0.201 0.0056

0.3245 0.0079

0.3369 0.0339

0.0125 3.95E-5

0.2014 0.015

0.1936 0.01

0.1955 0.0103

0.0054 1.47E-5

0.3054 0.0129

μ σ2

0.05 6.77E-5

0.0097 1.46E-5

0.0006 7.90E-9

0.0007 5.00E-9

0.1729 0.00972

0.1266 0.0113

0.1989 0.0176

0.2127 0.0177

0.006 7.55E-6

0.1369 0.0073

0.1285 0.0045

0.13 0.0047

0.0048 1.83E-6

0.2406 0.0052

μ σ2

0.0292 8.66E-5

0.0055 6.54E-7

0.0005 1.01E-6

0.0006 8.47E-9

0.1204 0.0042

0.0972 0.0056

0.1445 0.033

0.1591 0.0077

0.0039 1.38E-6

0.111 0.0033

0.1033 0.0017

0.1047 0.0018

0.0056 2.41E-7

0.2144 0.0014

TABLE V. ADULT DATASET: MEAN μ AND VARIANCE σ2 OF KLD OF PREDICTED AND ACTUAL QUANTIFICATION FOR ALL TESTED QUANTIFIERS W.R.T.
HIGH, MODERATE AND LOW CLASS DISTRIBUTION UNBALANCE IN THE TRAINING SETS (LEFT) OR THE TEST SETS (RIGHT) OF FIXED SIZE. THE BEST

RESULTS ARE HIGHLIGHTED IN BOLD.

2) Comparison with Forman’s SVM: Using our implemen-
tation of AC and CC Forman’s strategies for SVM as baseline,
we obtain interesting results. Our top quantifiers (AC(RFEB)
and AC(RFCQB)) show, for both datasets, greater accuracy in
case of highly unbalanced training than SVM (H class). When
the unbalance in the training distribution decreases (classes M
and L), the average accuracy for the two classes of methods
becomes alike: however, is worth noting how in such cases
the σ2 for SVMs is higher w.r.t. that of quantification trees
(see Table VI) meaning that the latter shows fewer dispersion
(higher accuracy stability) inside the considered classes.

A discussion apart is needed when analyzing the average
accuracy outcome when the test class distribution is fixed.
In this case the overall accuracy for quantification trees is
consistently better w.r.t. SVM’s. On the basis of these empirical
results, we can conclude that, the proposed quantifiers lead to
a higher average accuracy (regardless the distribution of the
training set used to build the model) and to a comparable
resilience to changes in the distribution of the test w.r.t. the
best baselines. This is a remarkable outcome, given the su-
perior classification accuracy of the SVM model compared to
decision trees. Despite this, Our variants of decision-tree based
techniques yield simpler, more accurate and more resilient
quantifiers.

VI. RELATED WORK

The earliest mention of the quantification problem we are
aware of is to be found in [17], where the task is simply called

counting. However, it is not until 2005 that quantification
was addressed as a task in its own right, in the work of
Forman and colleagues [7], [8], [9], [10]; in this series or
papers, they propose several quantification methods and the
measure (KLD) which is now the standard evaluation measure
for quantification. Bella et al. [1] later introduced probabilistic
version of Forman’s methods discussed in Section II-B. Esuli
and Sebastiani [6] use a variant of SVMs that uses KLD as a
loss, and were thus the first to propose the use of a learning
algorithm specifically devised for quantification.

Quantification has been applied to several domains. For
example, [9] uses it to determine the prevalence of support-
related issues in incoming telephone calls received at customer
support desks, while [4] use it to estimate the prevalence
of response classes in open-ended answers obtained in the
context of market research surveys. [14] applies quantification
for estimating the distribution of support for different political
candidates within blog posts, while [13], [20] apply it for esti-
mating the prevalence of damaged cells in sperm samples for
veterinary applications. Differently from all of the above, Xue
and Weiss [26] use quantification with the goal of improving
the accuracy of classification. Quantification has been studied
also in the context of networked data [24], where the goal is
estimating class prevalence among a population of nodes in a
network.

We should also stress that no work in the (small) published
literature proposes learning models explicitly optimized for
quantification; a fortiori, our paper is also the first to proposes
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Training fixed Test fixed

H M L

Method

AC(QEB)

AC(QCQB)

AC(RFEB)

AC(RFCQB)

CC(QEB)

CC(QCQB)

CC(RFEB)

CC(RFCQB)

AC(C4.5)

CC(C4.5)

AC(RFC4.5)

CC(RFC4.5)

AC(SVM)

CC(SVM)

μ σ2

0.0185 1.61E-4

0.0281 1.73E-4

0.008 1.82E-4

0.0092 1.83E-4

0.3285 0.0206

0.3398 0.0222

0.5328 0.0455

0.5368 0.0445

0.0672 1.46E-4

0.3403 0.0038

0.3883 0.0078

0.3883 0.0078

0.2576 0.0046

0.6912 0.0055

μ σ2

0.006 3.88E-5

0.009 4.49E-5

0.0036 3.22E-5

0.0037 4.5E-5

0.006 0.0133

0.1139 0.0149

0.2197 0.0279

0.2165 0.028

0.0126 3.27E-5

0.0571 0.0023

0.0807 0.006

0.0807 0.006

0.0024 0.1018

0.1069 0.0873

μ σ2

0.0984 3.26E-4

0.007 8.92E-6

0.0036 1.08E-5

0.0027 1.16E-5

0.1004 0.0074

0.0606 0.0098

0.1386 0.0158

0.1255 0.0165

0.0064 1.75E-5

0.0323 0.0013

0.0295 0.0045

0.0295 0.0045

0.0019 0.34

0.0402 0.33

H M L

μ σ2

0.0595 1.26E-4

0.026 1.78E-4

0.0085 1.80E-4

0.0091 1.83E-4

0.2763 0.0222

0.239 0.0258

0.4362 0.0496

0.4217 0.0493

0.0441 1.26E-4

0.1859 0.004

0.2068 0.0105

0.2068 0.0105

0.0307 0.012

0.2657 0.0044

μ σ2

0.0669 1.17E-4

0.011 4.14E-5

0.0038 3.18E-5

0.0039 4.45E-5

0.1584 0.0118

0.15 0.0134

0.2619 0.0257

0.2589 0.0258

0.0239 1.92E-5

0.1272 0.00138

0.1473 0.0043

0.1473 0.0043

0.0745 0.0916

0.2474 0.0697

μ σ2

0.011 1.17E-4

0.007 4.68E-6

0.0029 1.06E-5

0.0026 9.97E-6

0.1108 0.0054

0.116 0.0063

0.1852 0.010

0.1878 0.0101

0.0164 9.51E-7

0.1046 2.92E-4

0.1279 0.0017

0.1279 0.0017

0.1346 0.3213

0.2846 0.2784

TABLE VI. BANK DATASET: MEAN μ AND VARIANCE σ2 OF KLD OF PREDICTED AND ACTUAL QUANTIFICATION FOR ALL TESTED QUANTIFIERS W.R.T.
HIGH, MODERATE AND LOW CLASS DISTRIBUTION UNBALANCE IN THE TRAINING SETS (LEFT) OR THE TEST SETS (RIGHT) OF FIXED SIZE. THE BEST

RESULTS ARE HIGHLIGHTED IN BOLD.

Training fixed Test fixed

H M L

Method

AC(QEB)

AC(QCQB)

AC(RFEB)

AC(RFCQB)

CC(QEB)

CC(QCQB)

CC(RFEB)

CC(RFCQB)

AC(C4.5)

CC(C4.5)

AC(RFC4.5)

CC(RFC4.5)

AC(SVM)

CC(SVM)

μ σ2

1.2414 0.9081

1.2419 0.908

0.008 1.34E-5

0.0078 2.62E-5

1.4482 0.9471

1.4482 0.7956

0.6447 9.9E-6

0.6613 1.36E-5

0.055 0.0021

0.29 8.59E-4

0.2862 0.0303

0.2862 0.0303

2.3009 0.6356

2.5264 0.6394

μ σ2

0.0023 0.7133

8.41E-4 0.7323

9.17E-4 1.06E-5

5.53E-4 9.08E-6

0.1109 0.7981

0.1272 0.7956

0.2256 0.0789

0.2321 0.0796

0.0176 3.21E-4

0.0806 0.0211

0.0698 0.022

0.0698 0.022

0.5772 0.6071

0.7248 0.606

μ σ2

0.0512 0.7902

0.0011 0.7845

5.16E-4 0.0576

2.34E-4 0.0588

0.1173 0.5675

0.0463 0.5915

0.1082 0.0411

0.0939 0.0434

0.0126 0.0144

0.0806 0.0075

0.0282 0.0151

0.0282 0.0151

0.0012 0.5965

0.0574 0.5877

H M L

μ σ2

0.4438 1.1576

0.4043 1.1717

0.0049 1.68E-5

0.0048 3.06E-5

0.6481 1.0154

0.5969 1.0317

0.4373 0.0927

0.4298 0.0951

0.049 0.0022

0.1873 0.0249

0.1689 0.0361

0.1689 0.0361

0.9661 0.9199

1.1509 0.8694

μ σ2

0.399 0.8

0.3908 0.8035

0.0021 8.25E-6

0.0019 1.15E-5

0.5117 0.6592

0.4983 0.6633

0.2921 0.0523

0.2958 0.0537

0.0222 8.15E-4

0.1207 0.0127

0.1128 0.0197

0.1128 0.0197

0.8997 0.5486

1.0299 0.515

μ σ2

0.3947 0.5884

0.3847 0.5912

0.0021 8.43E-6

0.0016 7.05E-6

0.4506 0.4435

0.458 0.4475

0.2289 0.0266

0.2378 0.0271

0.0137 2.52E-4

0.0949 0.0061

0.0918 0.0108

0.0918 0.0108

0.8689 0.3376

0.9748 0.3056

TABLE VII. MAGIC: MEAN μ AND VARIANCE σ2 OF KLD OF PREDICTED AND ACTUAL QUANTIFICATION FOR ALL TESTED QUANTIFIERS W.R.T. HIGH,
MODERATE AND LOW CLASS DISTRIBUTION UNBALANCE IN THE TRAINING SETS (LEFT) OR THE TEST SETS (RIGHT) OF FIXED SIZE. THE BEST RESULTS

ARE HIGHLIGHTED IN BOLD.

the direct optimization of decision trees for quantification
purposes.

A research field that is only apparently related to quan-
tification is collective classification (CC) [21]. Similarly to
quantification, here the classification of instances is not viewed
in isolation. However, CC is radically different from quan-
tification in that its focus is on improving the accuracy of
classification by exploiting relationships between the objects to
classify (e.g., hypertextual documents that link to each other).
The accuracy of CC is evaluated at the individual level, rather
than at the aggregate level as for quantification.

Quantification has also relations with prevalence estimation
from screening tests, an important task in epidemiology ([15],
[16], [19], [27]). A screening test is a test that a patient

undergoes in order to check if s/he has a given pathology. Tests
are often imperfect, i.e., they may give rise to false positives
(the patient is incorrectly diagnosed with the pathology) and
false negatives (the test wrongly diagnoses the patient to be
free from the pathology). Therefore, testing a patient is akin
to classifying a document, and using these tests for estimating
the prevalence of the pathology in a given population is
akin to performing quantification via classification. The main
difference between this task and quantification is that a screen-
ing test typically has known and fairly constant recall (that
epidemiologists call “sensitivity”) and specificity (i.e., recall on
the complement of the class), while the same usually does not
happen for a classifier. Another related field in statistics is the
“randomized response” methodology for conducting privacy-
preserving tests, which uses a correction statistics similar to
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adjusted count post-processing [25].

VII. CONCLUSION

In this paper we have proposed how to build decision trees
geared towards the quantification task. Specifically, we have
presented two measures for quantification accuracy, one fo-
cused on the optimization of quantification accuracy only,
and the other aiming at a trade-off between classification and
quantification accuracy. We have defined two methods for
solving the quantification task via decision tree learning based
on the two proposed measures. The thorough experimental
evaluation that we have carried out shows that our methods
outperform state-of the-art quantifiers optimized for classifica-
tion accuracy, such as SVMs.

Solving the quantification problem by machine learning
techniques opens up new avenues to the estimation of social
indicators based on big data, provided that we can rely on
relatively small surveys of labelled data. Clearly, an impor-
tant aspect to be further investigated is the analysis of the
confidence of our quantification results, that would make our
methodology stronger. Future investigations will be directed
also to explore other methods for optimizing quantification
accuracy. For example, we plan to study the effect of directly
optimizing the KLD function inside the learning process.
Different strategies for selecting the best node for splitting
should also be evaluated more in depth.

An additional, interesting open question is related to the
combination of random forests with the wisdom-of-the-crowd
theory. In our current solution every quantification tree repre-
sents the opinion of an expert because all trees are learnt on a
training set with a fixed set of features. It will be interesting to
study the effect of learning individual quantification trees with
varying numbers of features representing the various levels of
expertise of the participants.
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