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Abstract—Nowadays, a hot challenge for supermarket chains
is to offer personalized services to their customers. Market basket
prediction, i.e., supplying the customer a shopping list for the next
purchase according to her current needs, is one of these services.
Current approaches are not capable of capturing at the same time
the different factors influencing the customer’s decision process:
co-occurrence, sequentuality, periodicity and recurrency of the
purchased items. To this aim, we define a pattern named Temporal
Annotated Recurring Sequence (TARS). We define the method to
extract TARS and develop a predictor for next basket named
TBP (TARS Based Predictor) that, on top of TARS, is able to
understand the level of the customer’s stocks and recommend
the set of most necessary items. A deep experimentation shows
that TARS can explain the customers’ purchase behavior, and
that TBP outperforms the state-of-the-art competitors.

I. INTRODUCTION

Detecting the purchase habits of customers and their evolu-

tion in time is a crucial challenge for effective marketing poli-

cies and engagement strategies. In such context one of the most

promising facilities retail markets can offer to their customers

is market basket prediction, i.e., the automated forecasting of

the next basket that a customer will purchase. An effective

basket recommender can act as a shopping list reminder
suggesting the items that the customer could probably need.

A successful realization of this application requires an

in-depth knowledge of an individual’s general and recent

behavior [1]. In fact, purchasing patterns of individuals evolve

in time and can experience changes due to both environmental

reasons, like seasonality of products or retail policies, and

personal reasons, like diet changes or shift in personal prefer-

ences. Thus, a satisfactory solution to next basket prediction

must be adaptive to the evolution of a customer’s behavior, the

recurrence of her purchase patterns and their periodic changes.

In this paper we propose the Temporal Annotated Recurring
Sequences (TARS), adaptive patterns which model the purchas-

ing behavior of an individual by four main characteristics.

Firstly TARS consider the co-occurency: a customer systemat-

ically purchases a set of items together. Secondly TARS model

the sequentiality of purchases, i.e., the fact that a customer

systematically purchases a set of items after another one. Third

TARS consider periodicity: a customer can systematically

make a sequential purchase only in specific periods of the year,

because of environmental factors or personal reasons. Fourth,

TARS consider the recurrency of a sequential purchase during

each period, i.e., how frequently that sequential purchase

appears during a customer’s period of the year.

We exploit the TARS and the multiple factors they are

able to capture for constructing a parameter-free TARS Based
Predictor (TBP). TBP is able to solve the market basket

prediction problem and to provide a reliable list of items to

be reminded in the next purchase as basket recommendation.

We demonstrate the effectiveness of our approach by ex-

tracting the TARS for thousands of customers in three real-

world datasets. We show how TARS are easily readable and

interpretable, a characteristic which allows gaining useful in-

sights about the purchasing patterns of products and customers.

Then, we implement a repertoire of state-of-the-art methods

and compare them with TBP. Our results show that (i) TBP

outperforms the state-of-the-art methods, (ii) it is able to

predict up to the next 20 baskets, and (iii) the quality of its

predictions stabilizes after about 36 weeks.

II. RELATED WORK

Next basket prediction is mainly aimed at the construction

of effective recommender systems. They can be categorized

into general, sequential, pattern-based and hybrid recom-

menders. General recommenders are based on collaborative

filtering and produce recommendations with respect to gen-

eral customers’ preferences [2]. Sequential recommenders

are based on Markov chains and produce recommendations

exploiting sequential information and recent purchases [3].

Pattern-based recommenders base predictions on frequent

itemsets extracted from the purchase history of all customers

while discarding sequential information [4], [5]. The hybrid

approaches combine the ideas underlying general and sequen-

tial recommenders. In [6] the authors use personalized tran-

sition graphs over Markov chains with Bayesian Personalized

Ranking to compute the probability that a customer will pur-

chase an item. HRM [7] and DREAM [8] exploit both general

customers’ preferences and sequential information by using re-

current neural networks. A different hybrid approach merging

Markov chain and association patterns is described in [9].

All the approaches described above suffer from several

limitations. General recommenders and pattern-based recom-

menders do not take into account neither the sequential

information nor the customers’ recency. On the other hand,

sequential recommenders assume the independence of items

in the same basket and do not capture factors like mutual

influence. Furthermore, all of them require transactional data

about many customers in order to make a prediction for a
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single customer. For this reason, they do not follow the user-
centric vision for data protection as promoted by the World

Economic Forum [10], [11], which incentives personal data

management for every single user of a data-based service.

Cumby et al. [12] propose a basket predictor which embraces

the user-centric vision by reformulating next basket prediction

as a classification problem. However, also this approach also

assumes the independence of items purchased together.

Finally, the main drawback of the existing hybrid ap-

proaches [8], [7], [9] is that their predictive models are hardly

readable and interpretable by humans [13]. The interpretability

is valuable both for a retail chain manager, who is interested

in interpreting the predictive model to improve the marketing

strategies, and the customers who want to gain insights about

their personal purchasing behavior.

III. MARKET BASKET PREDICTION PROBLEM

We refer to market basket prediction as the task of predict-

ing which items a customer will purchase in her next transac-

tion. Formally, let C = {c1, . . . , cz} be a set of z customers

and I = {i1, . . . , iv} be a set of v items. Given a customer

c, Bc = 〈bt1 , bt2 , . . . , btn〉 is the ordered purchase history of

her baskets (or transactions), where bti ⊆ I represents the

basket composition and ti ∈ [t1, tn] is the transaction time.

We indicate with B = {Bc1 , Bc2 , . . . , Bcz} the set of all

customers’ purchase histories. Given the purchase history Bc

of customer c and the time tn+1 of the next transaction, market

basket prediction consists in providing the set b∗ of k items

that customer c will purchase in the next transaction btn+1
.

Our approach to market basket prediction aims at over-

coming the main limitations of existing methods illustrated

in Section II. To this purpose, we propose a hybrid predictor

which combines ideas underlying sequential and pattern-based

recommenders. The approach consists of two main compo-

nents. The first one is the extraction of Temporal Annotated
Recurring Sequences (TARS) from the customer’s purchase

history, i.e., sequential recurring patterns able to capture the

customer’s purchasing habits. The second one is the TARS
Based Predictor (TBP), a predictive method that exploits the

TARS of a customer to forecast her next basket.

IV. CAPTURING PURCHASING HABITS

In this section we formalize TARS and we describe how to

extract them from the purchase history of a customer.

Temporal Annotated Recurring Sequences (TARS) model

recurrent and sequential purchases of a customer – i.e., the fact

that a set of items are typically purchased together and that a

set of items is typically purchased after another set of items –

and the recurrence of the sequential purchase – i.e., when and

how often such pattern occurs in the purchase history of the

customer. In order to understand how TARS capture all these

features at the same time, we need to define its components.

Definition 1 (Sequence). Given the purchase history of a
customer Bc = 〈bt1 , . . . , btn〉, we call S = 〈X,Y 〉 = X → Y
a sequence if the pair of itemsets X ⊆ bth and Y ⊆ btl ,

X,Y �= ∅, th < tl and � S′ = X ′ → Y ′, X ′ ⊆ X ⊆ bt′h and
Y ′ ⊆ Y ⊆ bt′l such that t′h, t

′
l ∈ (th, tl). X and Y are called

the head and the tail of the sequence, respectively.

We denote with TS = 〈tj1 , . . . , tjm〉 the head time list of S,

i.e., the ordered list of the head’s time of all the occurrences

of S in Bc. The support |TS | of a sequence S is the size of its

head time list. We call length of a sequence |S| = |X|+|Y | the

sum of sizes of the head and of the tail. We say that a sequence

S′ is a subsequence of S′′, S′ �⊆ S′′ if X ′ ⊆ X ′′ ∧ Y ′ ⊆ Y ′′.

Definition 2 (Intra-Time). We define αh=tl−th as the intra-

time of an occurrence of a sequence S, i.e., the difference
between the time of the head and the time of the tail. We
denote with AS=〈α1, . . . , αm〉 the ordered intra-time list of
all the occurrences of S in B.

Definition 3 (Inter-Time). Given the head time list TS , we
define δj = tli − tlj with tli , tlj ∈ TS and tlj < tli as the
inter-time of a sequence S, i.e., the difference between the
times of the heads of two consecutive occurrences of S. We
denote with ΔS=〈δ1, . . . , δm〉 the ordered inter-time list of S.
We impose δm=αm by construction.

Note that: (i) for each tj ∈ TS we have that αj ≤ δj , i.e.,

the intra-time of a sequence is always lower or equal than its

inter-time; (ii) for S = X → X , we have AS = ΔS .

Definition 4 (Period). Given a maximum inter-time δmax, a
minimum number of occurrences qmin, the head time list TS

and the inter-time list ΔS of a sequence S, we call period

an ordered time list P
(j)
S = 〈th, . . . , tl〉 ⊆ TS such that

∀tw ∈ P
(j)
S , δw ≤ δmax, P (j)

S is maximal, i.e., δh−1 > δmax,
δl+1 > δmax, and |P (j)

S | ≥ qmin. We denote with PS =

{P (1)
S , . . . , P

(m)
S } the set of periods of S.

The period of a sequence S captures a temporal interval

in which S occurs at least qmin times and the time between

any two occurrences is at most δmax. The support |P (j)
S | of a

period indicates how many times S occurs in P
(j)
S .

Definition 5 (Recurring Sequence). Let PS = {P (1)
S , . . . ,

P
(m)
S } be a set of periods, we define rec(S)=|PS | as the

recurrence of S, i.e., the number of periods PS in the purchase
history. Given a minimum number of periods pmin, S is a
recurring sequence if rec(S) ≥ pmin.

In summary, a sequence captures items which are purchased

together and after other items, the period of a sequence is a

time list respecting intra and inter time constraints, and a recur-

ring sequence is a sequence appearing in a certain number of

periods. Given these basic components, we define a TARS as:

Definition 6 (Temporal Annotated Recurring Sequence).
Given the purchase history B of a customer, a tempo-

rally annotated recurring sequence (TARS) is a quadruple
γ = (S, α, p, q), where S = 〈X,Y 〉 = X → Y is the sequence

of itemsets, α = (α1, α2) ∈ R2
+, α1 ≤ α2 is the temporal

annotation, p is the number of periods in which the sequence
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Algorithm 1: extractTars(B)
1 S ← extractBaseSequences(B);
2 {δmax

S }, {qmin
S }, {pmin

S } ← parametersEstimation(B,S);
3 S∗ ← sequenceF iltering(B,S, {δmax

S }, {qmin
S }, {pmin

S });
4 Ψ← buildTars-Tree(B,S∗, {δmax

S }, {qmin
S }, {pmin

S });
5 Γ← extractTarsFromTree(Ψ);
6 return Γ;

recurs, and q is the median of the number of occurrences in

each period. A TARS will also be represented as follows:

γ = X
α−−→
p,q

Y

We refer to Γc = {γ1, . . . , γm} as the set of all the

TARS of a customer c. A TARS is based on the concept of

sequence, S = 〈X,Y 〉 = X → Y , which intuitively indicates

that itemset Y is typically purchased after another itemset X .

The itemsets themselves point out which items are purchased

together. For example, a sequence {a}→{b, c} indicates that

{b, c} are purchased together after {a}. The temporal anno-

tation α=(α1, α2) indicates the minimum intra-time α1 and

maximum intra-time α2 intra-time of the sequence, i.e., the

range of time elapsing between the purchase of X and the pur-

chase of Y . A sequence can appear in several distinct periods,

i.e., time intervals where the sequence occurs continuously.

The number of periods p characterizes these recurrences, that

is, in how many periods the S appears. Finally, q indicates

how many times S typically occurs in a period.

By specifying the maximum inter-time δmax, the minimum

number of occurrences qmin, and the minimum number of

periods pmin, we can determine the set Γc of TARS that can

be extracted from the purchase history Bc a customer c.

To extract the TARS from a customer’s purchase history Bc

we use an extension of the well-known FP-Growth algorithm

[14]. FP-Growth builds a FP-tree which captures the frequency

at which itemsets occur in the dataset. It has been shown in

the literature [15], [16], [17] that FP-Growth can be extended

by attaching additional information to an FP-tree node in order

to calculate the desired type of pattern.

In our approach, we extend the FP-tree into a TARS-tree.

Every node of a TARS-tree stores a sequence S, the time list

TS , its support |TS |, the intra-time list AS , the inter-time list

ΔS and the periods PS derived from TS w.r.t. δmax and qmin.

The TARS extraction procedure is described in Algorithm 1.

In the first step it extracts from the purchase history B the base
sequences S , i.e., the sequences of length 2 (line 1). Then, a set

of parameters {δmax
S }, {qmin

S }, {pmin
S } is estimated for each

base sequence S ∈ S with respect to B (line 2). The base

sequences S are then filtered with respect to these parameters

and the base recurring sequences S∗ are extracted, while the

other base sequences are discarded to reduce the search space

(line 3). Finally, the TARS-tree Ψ is built on the base recurring

sequences S∗ (line 4), and the set Γ of TARS annotated with

α, p, q is extracted from Ψ (line 5) according to FP-Growth.

Data-Driven Parameters Estimation. In order to make pa-

rameters δmax, qmin, pmin adaptive not only to the individual

Algorithm 2: parametersEstimation(S, B)
1 Dδmax ← ∅; Dqmin ← ∅; Dpmin ← ∅;
2 foreach S ∈ S do Dδmax ← Dδmax ∪ {δ̂S = median(ΔS)};
3 Cδmax ← groupSimilar(Dδmax);
4 for Ch ∈ Cδmax do
5 foreach S assignedTo(Ch) do δmax

S ← median(Ch);

6 for S ∈ S do
7 TCS ← getT imeCompliantPeriods(S,B, {δmax

S });
8 Dqmin�Dqmin∪{median({q̂S=|TC (j)

S | |TC (j)
S ∈TCS})};

9 Cqmin ← groupSimilar(Dqmin);
10 for Ch ∈ Cqmin do
11 foreach S assignedTo(Ch) do qmin

S ← median(Ch);

12 for S ∈ S do
13 PS ← getPeriods(S,B, {δmax

S }, {qmin
S });

14 wS�
∑

P
(j)
S

∈PS |P (j)
S |;eS�wS/|PS |;Dpmin�Dpmin∪{eS};

15 Cpmin ← groupSimilar(Dpmin);
16 for Ch ∈ Cpmin do
17 for S assignedTo(Ch) do
18 pmin

S ← median({rec(PS′)=|PS′ |S′assignedTo(Ch)});

19 return {δmax
S }, {qmin

S }, {pmin
S };

customer [18], but also to the sequences in Bc, we apply two

pre-processing steps on S (lines 1–2 Algorithm 1).

The first pre-processing step is the data-driven estimation of

the sets of parameters {δmax
S }, {qmin

S }, {pmin
S } described in

Algorithm 2. Let S be the set of base sequences and δ̂S be the

median of inter-times in ΔS (line 2). Given a base sequence S,

δmax is estimated as follows: (i) we group the base sequences

with similar inter-times δ̂S (line 3) obtaining a set of clusters

Cδmax={C1, . . . , Cv}; (ii) if S ∈ Ch, Ch ∈ Cδmax , we set

δmax
S as the median of the δ̂S values in Ch (lines 4–5).

Then, we calculate the periods TCS compliant only with the

temporal constraint δmax
S (lines 6–8) and we estimate {qmin

S }
as follows: (i) we group the base sequences with similar

median number of occurrences per period q̂S , producing a

set of clusters Cqmin={C1, . . . , Cg} (line 9); (ii) if S∈Ch,

Ch∈Cqmin we set qmin
S as the median of the q̂S in Ch (lines

10–11). Similarly, we estimate {pmin
S } (lines 12–18).

We group the base sequences by dividing the values into

equal-sized bins [19], whose number is estimated as the

maximum between the estimated number of bins suggested

by the Sturges [20] and the Freedman-Diaconis methods [21].

Sequence Filtering. The second pre-processing step con-

sists in selecting the base recurring sequences, i.e., the base

sequences satisfying the sets of parameters {δmax
S }, {qmin

S },
{pmin

S }. We apply this filtering to reduce the search space so

that the building of the TARS-tree and the TARS extraction

(lines 4–5 Algorithm 1) are employed only on the super-

sequences of the base recurring sequences. In other words,

if S1 is not a base recurring sequence and S1
�⊆S2, then we

assume as a heuristic that S2 is not recurring too, and we elimi-

nate it through the sequence filtering process. We adopt the se-

quence filtering heuristic for reducing the search space because

the antimonotonic property [22] does not apply to TARS.
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Algorithm 3: getActiveTARS(B, tn+1,Γ)

1 Γ̂← ∅; Q← ∅; L← ∅; Υ← Γ;
2 for btj , btj−1 ∈ sort-desc(B) do
3 αj−1 ← tj − tj−1;
4 for X ⊆ btj−1 do
5 for Y ⊆ btj do
6 if ∃ γ ∈ Υ | γ = (S, α, p, q) ∧ α1 ≤ αj−1 ≤ α2 ∧

S = 〈X,Y 〉 = X → Y then
7 if γ ∈ Γ̂ then
8 Qγ ← Qγ + 1; Lγ ← tj−1;

9 if Qγ > q then Γ̂← Γ̂/{γ};
Υ← Υ/{γ};

10 if Lγ − tj−1>q · (α1-α2) then
Υ← Υ/{γ};

11 else
12 Γ̂← Γ̂ ∪ {γ}; Qγ ← 1; Lγ ← tj−1;

13 if Υ = ∅ then return Γ̂, Q;

14 return Γ̂, Q;

V. TARS BASED PREDICTOR

On top of the set Γc of TARS extracted from the pur-

chase history Bc of customer c we build the TARS Based
Predictor (TBP), an approach for market basket prediction

that is markedly personalized and user-centric [11], [10]: the

predictions for a customer c are performed using only the

model build on her purchase history Bc, i.e., her TARS Γc.

Given the purchasing history Bc of customer c, the time

tn+1 of c’s next transaction, and c’s TARS set Γc, the TBP ap-

proach works in two steps. First, it selects the set Γ̂c of active
TARS. Second, it computes a score Ωci for every item i be-

longing to an active TARS in Γ̂c, ranks the items according to

Ωci , and selects the top k items as the basket prediction for c.

Algorithm 3 shows the procedure of the TBP to select the

active TARS of a customer Γ̂. First, it sorts the purchase

history B ordering it chronologically from the most recent

basket to the oldest one, then it loops on pairs of consecutive

baskets (line 2) searching for a set Υ of potentially active
TARS (lines 4–7). When it finds a potentially active TARS γ,

it considers two cases. If the sequence S of γ is encountered

for the first time, the algorithm adds γ to the set Γ̂ of active

TARS and initializes two variables: the number of times γ has

been encountered Qγ and its last starting time Lγ (line 13). In

the second case, the algorithm increments Qγ and updates Lγ

(line 9). If Qγ > q the algorithm removes γ from the set of

active TARS and from the set of potentially active TARS (line

9). If too much time has passed between the last beginning

of TARS γ and its next occurrence (line 11), the algorithm

does not look for that TARS γ anymore and removes it from

Υ. Algorithm 3 stops either when the set of potentially active

TARS is empty (line 14), or when the entire purchase history

B has been scanned (line 15). Finally, it returns the set Γ̂ of

active TARS and the number of times Q the sequences of the

active TARS have occurred in the last period.

Algorithm 4 shows the procedure of TBP to compute the

items’ scores. First, it sets to zero the score of each item Ωi

Algorithm 4: calculateItemScore(B, Γ̂, Q)

1 Ω← ∅; foreach i ∈ I do Ωi ← 0;

2 for γ = (S = 〈X,Y 〉, α, p, q) ∈ Γ̂ do
3 foreach i ∈ Y do Ωi ← Ωi + (q −Qγ);

4 for i ∈ {i | ∃ γ = (S = 〈X,Y 〉, α, p, q) ∈ Γ̂, i ∈ Y } do
5 Ωi ← Ωi + sup(i)

6 return Ω;

(line 1) Then, for every active TARS γ containing item i∈Y ,

it increases Ωi with the difference between the typical number

of occurrences q of γ and Qγ indicating the number of times

that the sequence of γ occurred in the recent history (lines

2–3). Finally, Ωi is augmented with the support of item i for

the items in the tail of the active TARS (lines 4–5).

After this procedure, TBP ranks the items’ scores Ωc in

descending order and returns the top-k items as its prediction.

VI. EXPERIMENTS ON RETAIL DATA

In this section, we report the experiments performed on

three real-world datasets to show the properties of the TARS

and the effectiveness of TBP in market basket prediction.

A. Experimental Settings

State-of-the-art methods [6], [7], [8], [12] fix the size of the

predicted basket to k=5 or k=10. However, we think that the

size k of the predicted basket should adapt to the customer’s

personal behavior. Indeed, we report the evaluation of the

predictions made using both a fixed length k ∈ [2, 20] for

all the customers and using a customer-specific size k = k∗c ,

where k∗c indicates the average basket length of customer c.
According to the literature [8], [7], [6], [12], we adopt a

leave-one-out strategy for model validation: for each customer

c we use the purchase history Bc={bt1 , . . . , btn} for extracting

the TARS, and the basket btn+1
to test the performance.

For each customer, we evaluate the agreement of the pre-

dicted b∗ and the real basket b using the following metrics:

• F1-score, the harmonic mean of precision and recall [23]:

• normalized F1-score: the F1-score calculated only for the

customers having at least one item correctly predicted.

B. Datasets

We performed our experiments on three real-world datasets:

Coop-A, Coop-C (both extracted from the Coop repository)

and Ta-Feng. Table I shows the details of the datasets.

The Coop repository is provided by Unicoop Tirreno1, a

big retail supermarket chain in Italy. It stores transactions

made in 23 different shops in the province of Leghorn

over the years 2007-2014. The set of Coop items includes

food, household, wellness, and multimedia items. From the

1https://www.unicooptirreno.it/ TABLE I
STATISTICS OF THE DATASETS USED IN THE EXPERIMENTS.

Dataset cust. # baskets # items avg basket
per cust.

avg basket
length

Coop-A 10,000 7,407,056 4,594 432.4±353.4 9.4±5.8
Coop-C 10,000 7,407,056 407 432.4±353.4 8.6±4.9
Ta-Feng 2,319 24,304 5,117 10.4±7.5 1.8±1.1
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TABLE II
EXAMPLES OF TARS EXTRACTED FROM Coop-C.

- Supported by more than 90% customers

{milk} (1,17)−−−−−−→
18.87,6.58

{milk} {banana} (2,35)−−−−−−→
14.63,7.20

{banana}
- Supported by more than 25% customers

{bread,

potato
} [2,15]−−−−−−→

11.40,8.15
{bovine} {bread,

potato
} [3,27]−−−−−→

7.25,4.30

{banana,
potato

}

repository, we extract two datasets: Coop-A and Coop-C. In

Coop-A (articles) the items of a basket are labeled with a

fine-grained categorization which distinguishes, for example,

between blood orange and navel orange, for a total of 7,690

different articles. In Coop-C (categories) the items are mapped

to a more general category: e.g., both blood orange and navel

orange are considered as orange, generating 520 categories.

All the customers in Coop-A and Coop-C have at least one

purchase per month. Ta-Feng2 dataset covers food, stationery

and furniture, with 23,812 different items. It contains 817,741

covering over 4 months. We remove customers with less than

10 baskets and we consider the remaining 7%. Since we act

experiments on retail data we adopt the day as time unit:

parameters and annotations are expressed in days.

C. Interpretability of TARS

The interpretability of TARS is one of the main char-

acteristics of our approach. Table II shows some examples

of TARS extracted from Coop-C. We report the median of

α, p and q across all the customers having the presented

TARS. We observe that TARS with a recurring base sequence

are the most supported among the customers. For example

{milk}→{milk} and {banana}→{banana} are supported

by more than 90% of the customers in Coop-C. The two TARS

have similar q indicating that they have similar recurrence

degrees, i.e., they occur a similar number of times in the

respective periods. In contrast {banana}→{banana} has a

higher maximum intra-time (α2=35) and a lower average

number of recurrences (p=14.63). This indicates that: (i)
the time for a banana re-purchase is higher than the time

of a milk re-purchase; (ii) the support to have a distinct

period is higher for {banana} than {milk}. We notice for

more than 25% of the customers the contemporary purchase

{bread, tomato} can indicate a future basket with {bovine}
or with {banana, potato} and that these TARS have very

different annotations α, p, q. Finally, even if the most common

TARS among the customers are those with base sequences,

the TARS in Γc with sequence length greater than two are on

average more than the 95% for each customer.

D. Temporal Validity and Extraction Reliability of TARS

In this section, we present some peculiar properties of TBP:

the temporal validity and reliability of the TARS extracted.

Since these experiments are closely tied to the applicability of

TBP in real services, we report the results obtained on Coop.

In real-world applications is unpractical, or even unneces-

sary, to rebuild a predictive model from scratch every time

2http://www.bigdatalab.ac.cn/benchmark/bm/dd?data=Ta-Feng

Fig. 1. Left: evaluation of TARS temporal validity with respect of F1-score.
Right: evaluation of TARS reliability by augmenting the purchase history.

a new basket appears in a customer’s purchase history. This

leads to the following question: for how long are TBP predic-

tions reliable? We address this question by extracting TARS

on the 70% of the purchase history of every customer and

performing the prediction on the subsequent baskets. As shown

in Figure 1 (left), regardless the predicted basket size k the

F1-score remain stable up to 20 predictions, which suggests a

large temporal validity of TBP since the model construction.

How many baskets does TBP need to perform reliable

predictions? For each customer, we start from her second week

of purchases and extract TARS incrementally by extending

the training set one week at a time. We then predict the next

basket of the customer and evaluate the performance of TBP

in this scenario. Figure 1 (right) shows the median value and

the “variance” (by means of the 10th, 25th, 75th and 90th

percentiles) of the F1-score. as the number of weeks used in

the learning phase increases. The average F1-score does not

change significantly as the number of weeks increases, while

its “variance” reduces as more weeks are used in the learning

phase. This experiment shows that for a real application that

effectively runs TBP reliable performance on sound TARS are

expected when from 9 to 12 months of data are required.

E. Comparing TBP with Baseline Methods

We compare the performance of TBP against the following

baseline methods. Four user-centric approaches that build the

predictive model of a customer using only her purchase data

Bc, and four not user-centric methods that require purchase

data of all customers B. LST: the basket predicted is the

last basket purchased. TOP: predicts the top-k most frequent
items. MC: base the prediction on a Markov chain calculated

on Bc. CLF [12]: for each item it builds a binary classifier
on temporal features extracted from Bc. NMF [24]: Non-
negative Matrix Factorization. FMC [6]: Factorizing person-
alized Markov Chain. HRM [7]: Hierarchical Representation
Model DRM [8]: Dynamic Recurrent basket Model3.

Table III reports the F1-score of TBP against the baselines

when setting the length of the predicted basket equals to the

average basket length for each prediction of each individual

customer, i.e., k=k∗c . This kind of evaluation is markedly user-

centric and would be a suitable approach in implementing a

real personalized basket recommender tailored on the customer

behavior. TBP significantly outperforms the baselines and,

together with the others user-centric approaches, it outlines

3We provide the Python code of TBP, the baseline methods and an
anonymized sample of Coop dataset at https://github.com/GiulioRossetti/
tbp-next-basket. The code of DRM was kindly provided by the authors of [8].
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Fig. 2. Performance comparison of TBP against the baselines varying length k.

TABLE III
F1-SCORE USING k=k∗c . BOLD 1ST, bold-italic 2ND BEST PERFORMER.

k = k∗c TBP TOP MC CLF LST NMF FPM HRM DRM

F
1

Coop-A .17 .14 .14 .13 .09 .14 .08 .06 .05
Coop-C .24 .22 .23 .19 .14 .22 .16 .08 .12
Ta-Feng .09 .09 .06 .09 .06 .08 .08 .08 .07

Fig. 3. Normalized F1-score varying predicted basket length k.

how for this particular task a user-centric model is more

accurate than a not user-centric one. To understand how the

performance are affected by the variation of k, in Figure 2

we compare the F1-score produced by TBP and by the

baseline methods while varying k∈[2, 20]. We observe that

TBP considerably overtakes the baseline methods on all the

three datasets. Thus, the performance improvement of TBP

with respect to the state of the art are not negligible either

using k=k∗c or if a fixed k is specified for every customer.

Finally, we notice that the F1-scores can be biased by two

extreme scenarios: (i) the F1-score can be low because for

most of the customers no item is predicted even though for

some customers we predict most of the items; (ii) the F1-

score can be high because for most of the customers just one

item is predicted. Thus, in Figure 3 we show the performance

using the normalized F1-score instead of the F1-score. We

observe that the positive gap between TBP and the competitors

increases: for the customers for which TBP correctly predicts

at least one future item, the baskets predicted by TBP are more

accurate and cover a larger number of items than the baskets

predicted by the other methods.

VII. CONCLUSIONS

We have proposed a data-driven and user-centric approach

for market basket prediction. Our contribution is twofold. First,

we have defined Temporal Annotated Recurring Sequences

(TARS). Then we have used TARS to build a TARS Based

Predictor (TBP) for forecasting customers’ next baskets. We

have performed experiments on real-world datasets showing

that TBP outperforms state-of-the-art methods and, in contrast

with them, it provides interpretable patterns that can be used

to gather insights on customers’ shopping behaviors.

ACKNOWLEDGMENT

This work is partially supported by the European Communi-

tys H2020 Program, grant agreement 654024, “SoBigData: So-

cial Mining & Big Data Ecosystem”, http://www.sobigdata.eu.

REFERENCES

[1] B. Mittal and W. M. Lassar, “The role of personalization in service
encounters,” Journal of Retailing, vol. 72, no. 1, pp. 95–109, 1996.

[2] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in artificial intelligence, vol. 2009, p. 4, 2009.

[3] C. Chand, A. Thakkar, and A. Ganatra, “Sequential pattern mining:
Survey and current research challenges,” IJSCE, pp. 185–193, 2012.

[4] C.-N. Hsu, H.-H. Chung, and H.-S. Huang, “Mining skewed and
sparse transaction data for personalized shopping recommendation,” ML,
vol. 57, no. 1-2, pp. 35–59, 2004.

[5] E. Lazcorreta et al., “Towards personalized recommendation by two-step
modified apriori data mining algorithm,” ESA, pp. 1422–1429, 2008.

[6] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing
personalized markov chains for next-basket recommendation,” in WWW.
ACM, 2010, pp. 811–820.

[7] P. Wang, J. Guo, Y. Lan, J. Xu, S. Wan, and X. Cheng, “Learning
hierarchical representation model for nextbasket recommendation,” in
SIGIR. ACM, 2015, pp. 403–412.

[8] F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan, “A dynamic recurrent model
for next basket recommendation,” in SIGIR. ACM, 2016, pp. 729–732.

[9] P. Wang et al., “Modeling retail transaction data for personalized
shopping recommendation,” in CIKM. ACM, 2014, pp. 1979–1982.

[10] C. Kalapesi, “Unlocking the value of personal data: From collection to
usage,” in World Economic Forum technical report, 2013.

[11] A. Pentland et al., “Personal data: The emergence of a new asset class,”
in An Initiative of the World Economic Forum, 2011.

[12] C. Cumby et al., “Predicting customer shopping lists from point-of-sale
purchase data,” in SIGKDD. ACM, 2004, pp. 402–409.

[13] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust you?”:
Explaining the predictions of any classifier,” in SIGKDD. New York,
NY, USA: ACM, 2016, pp. 1135–1144.

[14] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in Sigmod Record, vol. 29, no. 2. ACM, 2000, pp. 1–12.

[15] K. Amphawan, A. Surarerks, and P. Lenca, “Mining periodic-frequent
itemsets with approximate periodicity using interval transaction-ids list
tree,” in SIGKDDw. IEEE, 2010, pp. 245–248.

[16] P. Fournier-Viger et al., “Phm: mining periodic high-utility itemsets,” in
ICDM. Springer, 2016, pp. 64–79.

[17] R. U. Kiran and M. Kitsuregawa, “Finding periodic patterns in big data,”
in BDA. Springer, 2015, pp. 121–133.

[18] E. Keogh, S. Lonardi, and C. A. Ratanamahatana, “Towards parameter-
free data mining,” in SIGKDD. ACM, 2004, pp. 206–215.

[19] K. Pearson, “Contributions to the mathematical theory of evolution,”
Phil. Trans. R. Soc. Lond., vol. 185, pp. 71–110, 1894.

[20] H. A. Sturges, “The choice of a class interval,” JASA, pp. 65–66, 1926.
[21] D. Freedman and P. Diaconis, “On the histogram as a density estimator:

L 2 theory,” Probability Theory and Related Fields, pp. 453–476, 1981.
[22] R. Agrawal et al., “Mining association rules between sets of items in

large databases,” in Sigmod Record, no. 2. ACM, 1993, pp. 207–216.
[23] P. Tan et al., Introduction to data mining. Pearson Education, 2006.
[24] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix

factorization,” in NIPS, 2001, pp. 556–562.

900


