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Abstract
Due to the SARS-CoV-2 pandemic, epidemic modeling is now experiencing a constantly
growing interest from researchers of heterogeneous study fields. Indeed, due to such an
increased attention, several software libraries and scientific tools have been developed to
ease the access to epidemic modeling. However, only a handful of such resources were
designed with the aim of providing a simple proxy for the study of the potential effects
of public interventions (e.g., lockdown, testing, contact tracing). In this work, we intro-
duce UTLDR, a framework that, overcoming such limitations, allows to generate “what
if” epidemic scenarios incorporating several public interventions (and their combinations).
UTLDR is designed to be easy to use and capable to leverage information provided by
stratified populations of agents (e.g., age, gender, geographical allocation, and mobility
patterns. . . ). Moreover, the proposed framework is generic and not tailored for a specific
epidemic phenomena: it aims to provide a qualitative support to understanding the effects of
restrictions, rather than produce forecasts/explanation of specific data-driven phenomena.
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1 Introduction

Starting from the end of 2019, the Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) has produced an outbreak of pulmonary disease, soon become a global
pandemic. Such a global event - that profoundly affected the behaviors of individuals all
over the world - abruptly focused the interest of media and researchers on a pillar field
of complex systems research: computational epidemiology. During 2020, researchers from
several fields (as well as the broad population) approached the rudiments of epidemic mod-
eling, searching for a better understanding of the continuously evolving situation and trying
at the same time to come out with their prediction for the future (Estrada 2020; COVID
et al. 2020; Naik et al. 2020; Sarkar et al. 2020; Bastos and Cajueiro 2020; Karnakov
et al. 2020; Prem et al. 2020; Perra 2021). Although such a renewed interest in epidemic
modeling acts as a valuable linchpin for novel valuable research, a usual barrier often pre-
vents newcomers from testing their ideas: the lack of easy to use tools to implement their
models.

The widest adopted approach to describe a complex system to understand spreading
phenomena is the adoption of compartment models (Pastor-Satorras et al. 2015b; Newman
2002; Hethcote 2000; Heesterbeek 2000; Anderson et al. 1992). The basic idea of these
models is to divide the population into disjoint groups (compartments), according to a few
key characteristics which are relevant to the process under consideration, then the evolu-
tion of an epidemic is modeled by keeping track of the number of individuals within each
compartment. This approach relies on the assumption that populations are fully mixed,
meaning that people interact with each other at random and each member in a compartment
is treated indistinguishably from the others in that same compartment. These interactions,
and in general transition processes between the compartments, are captured in the model
as in the limit of large population size: thus, we can fully specify them with nonlinear dif-
ferential equations accounting for the changes in the number of individuals in the various
compartments.

A basic compartmental model that is applicable to many common infections is the SIR
model (Pastor-Satorras et al. 2015a; Newman 2002), where we divide the population into
those who are susceptible (S), those who are infected (I ) and those who have recovered and
are immune (R). Under the assumption of a fully mixed population β - the average rate of
infective individuals that have contacts with other individuals per unit time - and γ - the
recovery rate - regulate the transitions among Susceptible and Infected, and Infected and
Recovered compartments. In the special case when γ = 0, SIR reduces to the SI model that
assumes that individuals never recover from the infection. Numerous variants of the SIR
model have been devised in the literature, for example by specifying further compartments
such as those who have been vaccinated, those who are receiving treatment, age groups, risk
groups, etc. Moreover, other more sophisticated models arise as we consider a different term
for the transmission process, or assume different distribution for the time individuals spend
in the infected compartment, leading to a non-constant recovery rate. For instance, spatial
effects can be incorporated by adding diffusion terms to the equations, or by considering
patch models and the underlying network of individuals’ mobility.

Indeed, during the last decades, several programming libraries - prevalently for the R
and Python languages - and visual tools have been released to facilitate epidemic model-
ing. However, with few notable exceptions, most of them only provide a small set of classic
models, not easily allowing the definition of novel ones. One of the main library designed to
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handle, manipulate and analyze graph structures in R is Igraph1(Csardi and Nepusz 2006).
It can handle large graphs very well and provides functions for generating random and reg-
ular graphs, graph visualization, centrality analysis, path length and much more. When it
comes to simulating epidemic models in R one of the most famous package is undoubtedly
EpiModel2(Jenness et al. 2016). EpiModel provides facilities for build, solve, and plot math-
ematical models of infectious disease. It currently provides functionality for three classes
of epidemic models – Deterministic Compartmental Models, Stochastic Individual Con-
tact Models and Stochastic Network Models – and three types of infectious disease can be
simulated upon them: SI, SIR, SIS. EpiModel allows generating visual summaries for the
execution of epidemic models; it provides plotting facilities to show the means and standard
deviations across multiple simulations while varying the initial infection status. The most
famous, pure Python package, that provides graph data structures along with algorithms,
synthetic generators and drawing tools is for sure NetworkX3(Hagberg et al. 2008). Upon
such general graph modeling framework is built the Nepidemix4 library: a suite tailored to
programmatically describe simulation of complex processes on networks (Ahrenberg et al.
2016). Another Python library dedicated to the simulation of diffusive models is EoN5. EoN
is designed to study the spread of SIS and SIR diseases in networks (Kiss et al. 2017). It is
composed of two sets of algorithms: the first set that deals with simulation of epidemics on
networks (SIR and SIS) and the second designed to provide solutions of systems of equa-
tions. Finally, a recent and easily extensible library has been proposed in (Rossetti et al.
2018). NDlib6 offers support to a vast ensamble of diffusion models both coming from the
Epidemic literature and the Opinion Dynamics one.

Unfortunately, none of the such resources offers integrated facilities to embed public
intervention policies within epidemic modeling (in an easy way). For this reason, in this
paper we introduce a novel, simple, framework, UTLDR7 - whose name is an acronym
identifying the main “compartments” it allows to build upon while defining ad-hoc epidemic
models.

Built on top of NDlib (Rossetti et al. 2018), UTLDR provides a modular backbone
that allows defining compartmental epidemic models that incorporates several intervention
strategies (quarantine, lockdown, testing and tracking, vaccination. . . ) as well as refined
information on population stratification and human mobility. Our framework differentiates
the meta-compartments in which individuals can transit among five groups: Undetected,
namely the non identified exposed/infected individuals; Tested, the infected individuals
identified and followed by the healthcare system; Lockdown, the individuals that are sub-
ject to social distancing and mobility restrictions; Dead and Recovered, those individuals
that completed (either with/without partial immunity in case of Recovered ones) their
path. Moreover, UTLDR also provides several extensions to cover additional intervention
strategies and sanitary risks (e.g., vaccination campaigns, inefficient corpse disposal. . . ).

1Igraph: http://igraph.org/redirect.html
2EpiModel: http://www.epimodel.org/
3NetworkX: https://networkx.github.io
4Nepidemix: http://nepidemix.irmacs.sfu.ca/
5https://github.com/springer-math/Mathematics-of-Epidemics-on-Networks
6NDlib documentation: ndlib.readthedocs.io
7UTLDR implementations details available at https://bit.ly/362xfe7
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Although not explicitly designed for SARS-CoV-2 modeling, UTLDR can be easily used to
simulate diffusive scenarios and represent a starting point for advanced epidemic modeling.
Conversely, from recent studies, our aim is not to describe a specific model but to allow
UTLDR users to define their own. UTLDR is designed to both facilitate newcomers in test-
ing their ideas and the general public - without a strong scientific background - to play with
a simulator and, hopefully, gain consciousness of both challenges of epidemic modeling and
reasons (as well as potential effects) behind standard non-medical interventions.

The paper is organized as follows. In Section 2 is described, in an incremental fashion,
the UTLDR framework by proposing a few examples on how its components can be com-
bined to include different public interventions strategies. In Section 4 a few models built
with the UTLDR framework are tested against (i) synthetic social interaction networks and
(ii) interacting agents stratified to match the population of an Italian region, Tuscany. The
provided simulations are not specifically fitted for a specific epidemic, rather devised to
illustrate the behaviour of a handful of models generated with the proposed framework on
top of a realistic population. Finally, Section 5 concludes the paper.

2 UTLDR: Undetected, tested, lockdown, dead and recovered

The framework that we propose is built as a conservative extension of the SEIR model
(Aron and Schwartz 1984) and designed to organize the population in five meta-statuses:
(U)ndetected, (T)ested, (L)ockdown, (D)ead, (R)ecovered.

In this section, we will provide, at a high level of abstraction, a description of how alter-
native/complementary interventions can be (incrementally) added to such a base model to
describe the modules of our framework. Our discussion will focus on the model parameters
exposed by each proposed SEIR extension as well as the rationale behind the novel com-
partments and the transition rules we define (explained through transition diagrams). For a
detailed mean-field description of UTLDR, refer to Appendix A.

Base model: SEIR The SEIR model was introduced in 1984 to investigate the role of sea-
sonality in cycles of recurrent epidemics. We can suppose that a population can assume four
states: Susceptible (S), those individuals able to contract the disease; Exposed (E), those
who have been infected but are not yet infectious; Infected (I ), those capable of transmitting
the disease; Recovered (R), those who have become immune or deceased.

Indeed, many diseases have a latent phase during which the individual is infected but
not yet infectious. This delay between the acquisition of infection and the infectious state
can be incorporated within the SIR model by adding a latent/exposed population, E, and
letting infected (but not yet infectious) individuals move from S to E and, only then, from
E to I . SEIR assumes that if during a generic iteration, a susceptible individual comes
into contact with an infected one, it becomes infected after an exposition period (1/σ )
with probability β, then it can switch to removed with probability γ (the only transition
allowed are S→E→I→R). Figure 1(a) shows the transition diagrams of a classic SEIR
model.

Testing, tracing and quarantine In the absence of specific therapeutic drugs or vaccines
for the novel disease, it is essential to detect the diseases early and immediately isolate the
infected individual from the healthy population (quarantine). Quarantine management is a
crucial measure that has to be taken once the human-human transmission is confirmed.
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Fig. 1 (a) In the SEIR model an individual can be in one of four states: (S)usceptible, (E)xposed, (I)nfected
or (R)ecovered. Arrows indicate transitions among compartments. (b) The UTR model extends SEIR by
introducing the Tested meta-compartment (blocks in green). Testing can be applied to both Exposed and
Infected populations and results in transitions to Quarantine compartments (ET and IT )

So, we generalize the SEIR model by introducing the testing performed on exposed and
infected people and the quarantine compartments. We add two statuses (as shown in the
transition diagram reported in Fig. 1(b):

– Identified Exposed (ET ): the exposed population that has been identified by testing
strategies;

– Identified Infected (IT ): the infected population that has been identified by testing
strategies.

We consider the population that reach either of the two statuses (marked in green in
Fig. 1(b)) as quarantined.
The transitions E → ET and I → IT are regulated by the following parameters:

– Testing probability: ϑE, ϑI

– Testing success rate: κE, κI

Therefore, exposed and infected individuals are tested with probability ϑE, ϑI , respec-
tively, and each test produces a false positive result with probabilities κE, κI , respectively.
Testing positive moves an individual into the appropriate detected case compartment. More-
over, UTLDR also allows, in case of positive testing result, to enable contact tracing
procedures (while specifying a temporal window, Ttracing , to limit the search).

While in a quarantine compartment, individuals are not allowed to infect susceptible
ones. Finally, to capture different recovery rates between I and IT , respectively (assuming
quarantined individuals being treated with appropriate medical care), we introduce the γT

as a parameter regulating the IT → R transition.

Lockdown and social distancing Another intervention procedure to control the spread of
infectious diseases is to reduce individuals’ social interactions. The rationale for social dis-
tancing/lockdown strategies is that they slow the spread of the disease (in extreme scenarios,
limiting it to individual households), smoothing the infection trend, reducing the pressure
on the health care system, and finally, buying time for its strengthening.

To simulate lockdown effects, we add in UTR three statuses (see the transition schema
in Fig. 2(a), new statuses marked in orange):

– Susceptible in lockdown (SL): the susceptible population adhering to the lockdown;
– Exposed in lockdown (EL): the exposed population adhering to the lockdown;
– Infected in lockdown (IL): the infected population adhering to the lockdown.
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Fig. 2 (a) The UTLR extension includes lockdown compartments (blocks in orange). Restrictions can be
applied to Susceptible, Exposed and Infected populations and result in transitions to locked compartments
(SL, EL and IL) (b) The UTLDR compartment adds the possibility of differentiating between recovered and
immunized population (R), and dead (D)

Each individual can move from its current status (if in S, E, or I ) to the corresponding
lockdown status as regulated by the following parameters:

– Adherence to lockdown (τ ): the probability that an individual adheres to the required
lockdown policy;

– Lockdown escape probability (μ): inverse of the expected duration of the lockdown;
during each iteration, socially distanced individuals can decide to leave the lockdown
with a probability μ.

Also, in this case, exposed and infected individuals in lockdown are tested with probability
ϑE, ϑI , respectively, and a probability of false positive result of κE, κI , respectively.

To make UTLR more general, we also add to the framework the possibility of considering
two different disease outcomes: recovering (and immunization, R) or death (D). With such
a new compartment, we get the UTLDR model8, whose transition diagram is shown in
Fig. 2(b).

Since the added final compartment can be reached from all the infected ones (namely, I ,
IT , and IL), we extend UTLDR with different transition probabilities to regulate its incom-
ing transition rules. In particular, we model with ω the real lethality rate (that regulates the
I → D and IL → D transitions) and ωT the observed one (that regulates the IT → D

transition).

ICU with/without availability limits So far, we considered the “tested” compartments
(namely ET and IT ) as a proxy to model quarantine. Indeed, we can extend such char-
acterization to enhance their expressiveness. In particular, we can maintain the quarantine
semantics for the ET status while leveraging IT as a first building block of another family
of compartments: Hospitalization.

Indeed, the diffusion of some diseases can determine the increasing demand for criti-
cal care affected by medical devices’ scarcity. Such limitations occur, for instance, when
there are no available ICU beds for patients with a critical illness, leading to delays in ICU
admission that have significant clinical consequences. Admission delays can result in the

8Without lack of generality we name the model with all meta-compartments enabled as the general frame-
work. Please, note that the full definition of a model is provided by the values of its parameter, thus there
might exists several UTLDR models having a different set of active compartments/transition rules.
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boarding of critically ill patients in the emergency area or in other hospital units, which is
associated with increased mortality.

To capture such an aspect, we extend our framework with the compartment HT , where
tested individuals are hospitalized in case of severe illness - thus making of IT the com-
partment collecting ill individuals experiencing mild symptoms (see the extended transition
diagram in Fig. 3(a).

Adding the HT compartment requires the definition of novel parameters: ι, namely the
probability of a severe case (e.g., requiring ICU) that regulates the transition IT → HT .
Moreover, due to lack of medical devices, it could happen that severe cases cannot be placed
in HT and are allocated to standard hospitalization routines, F : as expected, the transition
HT → F is subject to an upper limit on the resources that we identify as b. The F compart-
ment models severe cases that are not adequately treated and thus potentially affected by a
higher lethality (ωT instead of ω) and lower recovery probability (γT instead of γ ).

Corpse disposal efficiency, partial immunity and vaccination It is well known that in the
case of some diseases, such as Ebola (Nistal et al. 2019), the infective lying corpses are
infective. The dead infective corpses can be considered in the model as a new sub-population
D that can infect again. In this case, to extend our model, we add the parameter z - the
probability of infection from corpses - to regulate the transition S → I in case of direct
(and leaky) contact of a Susceptible individual with an Infected corpse (Fig. 3(b)).

So far, we have assumed people have lifelong immunity to disease upon recovery. Indeed,
such characteristics cannot be assumed for all possible diseases. An individual’s immunity
might decrease over time, or that a subset of the recovered population can not produce the
antibodies for the disease. To cover these scenarios, we extend the proposed model allowing
recovered individuals to return to a susceptible state, thus allowing the R → S transition,
under a re-infection probability s - as shown in Fig. 4(a).

Finally, the last building block of the proposed framework regards the activation of vac-
cination campaigns. To such extent, we introduce a new compartment V , collecting the

Fig. 3 (a) The UTLDR module with limited ICU availability includes the severe hospitalized population HT ,
that is differentiated to the one with mild symptoms IT ; moreover, population in HT that can not be treated
adequately is placed in F . (b) The UTLDR module with corpse disposal allows the contact of population in
S with an infected corpse in D
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Fig. 4 (a) The UTLDR model with partial immunity considers the possibility that population in S can be rein-
fected again. (b) The UTLDR model with vaccination includes a new sub-population V that has (successfully)
being vaccinated

sub-population that has (successfully) received the vaccination - as shown in Fig. 4(b). We
assume that only susceptible individuals (either in S or in SL) can be vaccinated, imposing
a vaccination probability v and a probability of vaccination nullification of f (inverse of the
vaccine’s expected temporal coverage). In the case of vaccination nullification, the V → S

transition is applied.

3 Extending UTLDR: Agent-basedmodeling and humanmobility

Although designed to capture different stages of infectious disease dynamics, the frame-
work described so far assumes a fully mixed population: every individual in the population
is equally likely to interact with every other individual, and each member in a compartment
is treated indistinguishably from the others of that same compartment. Such an approach
is widely adopted in epidemic modeling literature; however, it suffers from a relevant
limit: it makes model simulations fully deterministic (once fixed the population and model
parameters values).

Even though such a simplification allows for a closed analysis and characterization of
epidemic models, it is of utmost importance to consider those stochastic effects introduced
by the heterogeneous structure of contact networks. To such extent, we designed the pro-
posed framework to exploit the available information (if any) on the population social
tissue, thus transforming individuals into a (possibly) stratified population of agents (in the
following we use the terms individual/agent interchangeably).

We model agents’ social circles as a node-attributed graph G = (V ,E,A) where V =
{V1, V2, . . . , Vn} is the set of nodes (agents), E = {(u, v)|u, v ∈ V } is the set of edges
(the social ties connecting agents), and A is the set of node attributes (identifying both the
UTLDR compartments and node characteristics). We assume that in the defined feature-rich
(Interdonato et al. 2019) interaction graph each agent is fully specified by a set of arguments
from A, some of them mandatory (e.g., the node’s current compartment), other optional
(e.g., age, gender. . . ). For sake of simplicity we allow only the node’s compartment attribute
to vary during simulation.
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Moreover, to better simulate the dynamic nature of social interaction, we assume that
not all social ties of a given node are active during each simulation iteration. To imple-
ment such a constraint, we leverage a simple Activity Driven (Perra et al. 2012) network
model, a framework often employed to simulate evolutive dynamics of network topology in
the absence of explicit temporal interaction data (Liu et al. 2014; Pozzana et al. 2017; Zino
et al. 2018; Ogura et al. 2019). Each agent v ∈ V in the network has assigned an activation
probability av ∈ [0, 1] identifying the percentage of edges (chosen uniformly at random) he
activates during each simulation iteration. Moreover, we also allow part of such interactions
to occur outside the neighborhood of v. To do so, we augment the model with a probabil-
ity p (evaluated once for each interaction) to account for long-range contacts. In particular,
we allow each agent to interact with random ones from their neighborhood with probability
(1 − p) and with random ones from anywhere in the network with probability p. Long-
range interactions are introduced to model the chance that agents interact with infected
people outside their neighborhood (e.g., while on public transportation or at the supermar-
ket). Indeed, the parameter p defines the network’s locality: for p = 0 an agent interacts
only with their social circle, while p = 1 represents a uniformly mixed population. The av

and p parameters are vital factors in simulations involving quarantine/hospitalization and
lockdown compartments: the former one is implicitly used to restrict agents’ sociality dur-
ing quarantine/hospitalization, the latter one, to tune account for decreased mobility during
lockdowns.

Starting from such a network refined contact model, we defined two alternative versions
of the framework, each one assuming a different available knowledge: (i) explicit and (ii)
implicit social tissue models.

Explicit network structure In this scenario, the social topology connecting individuals is
known apriori. Explicit social interaction topologies are often obtained from online social
network platforms or built on small/medium-scale sensor tracking experiments. The main
issue in working with explicit network structures - apart from being difficult to obtain - lies
in the space consumption that grows rapidly as the population size increases.

Implicit network structure In this scenario, the social topology is unknown to the analyst:
we assume available (or, at least, partially inferable) other information characterizing the
population (e.g., workplace, school attended, household size. . . ). Leveraging such external
knowledge, as already done in literature (e.g., the model introduced in (Ferguson et al.
2020)), we build several social contexts for each agent. From each of them, randomly sample
with probability av the interactions occurring during each simulation iteration (and with
probability p interactions outside them). This approach efficiently addresses the memory
issue in storing the explicit interaction graph (which is now generated on the fly) while
introducing higher variability on individuals’ contacts.

It is essential to underline that the provided implementation of the UTLDR framework
also allows us to stratify all the discussed parameters to characterize the population better if
needed. So far, we suggested that each of the compartments controlling parameters may be
specified as (fixed) unique values: we opted for such simplification to ease the incremen-
tal framework introduction. However, when additional knowledge on the studied population
is available (e.g., age distribution, household distribution size, gender distribution, employ-
ment type/workplace/school size distributions. . . ), the proposed framework allows to use it
to stratify controlling parameter values directly (e.g., imposing β = 0.02 for female under
18 years old agents while setting β = 0.3 for the rest of the population). Such flexibility
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makes it possible to define sub-populations characterized by different responses to epidemic
events easily.

Another key component profoundly affecting epidemic spreading is human mobility
(Barmak et al. 2011; Espinoza et al. 2020; Kraemer et al. 2020; Cintia et al. 2020). So far,
we simplistically modeled long-range interactions with a simple probability; however, such
a parameter does not control the actual mobility constraints that might affect random social
interactions. For this reason, we incrementally extended our framework to leverage aggre-
gated mobility information (when available) to select the most likely cohort of agents for
short/medium/long-range interactions.

To do so, UTLDR requires three different, additional sources of data:

– aggregated geographic allocation of the population (e.g., as inferable from census data);
– a geographic tesselation (e.g., a hierarchy composed by census cells, municipalities,

regions. . . );
– a set of aggregated origin-destination matrices (one for each level of the tesselation

hierarchy, e.g., as computable from GPS/CDR data (Jain et al. 1999; Alexander et al.
2015)) each providing the probabilities of moving from/to any given geographic area
to all the others of the same hierarchy level.

In the presence of such knowledge, UTLDR will: (i) allocate each individual to several
geographic regions, one for each social circle he/she is involved in (e.g., one for the neigh-
borhood of the home location - as identified by stratification of the population over census
cells - and one for the workplace), (ii) sample social interactions among individuals asso-
ciated to shared social/geographical clusters (weighting them in different ways if needed),
and (iii) sample long-range interaction within geographic clusters reached with probabil-
ity given by the provided origin-destination matrices - assuming as starting location the
individual’s home one.

4 Case studies

In this section, we report a few case studies to underline the proposed UTLDR framework’s
flexibility. In particular, without losing generality, we propose two case studies: a first,
detailed in Section 4.1, using synthetically generated social networks to capture individuals’
interactions; the second, discussed in Section 4.2, focusing on a population - whose social
structure is not given - stratified starting from Italian census data.

4.1 Explicit Network Structure

In Figs. 5 and 6, we show the diffusion trends obtained by simulating alternative models
built on top of the proposed framework. All simulations are executed assuming the under-
lying social structure as generated by the Barabási and Albert (1999) (henceforth, BA) and
the Erdös-Rényi models (Erdös and Rényi 1959) (henceforth, ER), each one composed by
N = 5000 nodes. For the sake of simplicity, we do not integrate human mobility and
population stratification in the reported case studies.

We set an initial fraction of infected nodes to 0.0001, and simulate 150 iterations - except
for the SEIR model, where the number of iterations is extended to 300, to observe better a
possible re-infection effect. Moreover, while modeling the compartments where a lockdown
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Fig. 5 Experiments on the BA model. (a) The simplest SEIR + (b) re-infection allowed transition; (c) Testing
and (d) Lockdown scenarios + (e) dead-recovered distinction + (f) ICU availability

is included (i.e., UTLR and the remaining incremental modules), the first 50 iterations are
run without any social distancing policy in place, the following 50 imposing lockdown
restrictions and, finally, a release of such policies during the remaining iterations.

Fig. 6 Experiments on the ER model: (a) The simplest SEIR + (b) re-infection allowed transition; (c) Testing
and (d) Lockdown scenarios + (e) dead-recovered distinction + (f) ICU availability
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The following sets of parameters are used for testing the compared models (models
are reported in incremental order, the nth one inheriting the parameter values of all the
previous):

– SEIR: β = 0.02, σ = 0.2, γ = 0.03;
– SEIS: s = 0.01 (partial immunization, allows R → S);
– UTR: ϑE, ϑI = 0.01, κE, κI = 0.05, γT = γ ;
– UTLR: τ = 0.8, μ = 0.01;
– UTLDR: ω, ωt = 0.05;
– ICU: b = N , ι = 0.8;

Please, note that the selected values are chosen for testing how the framework works and
they do not reflect any real-world possible scenario. In detail, while modeling the simplest
SEIR model, we used a set of parameters that take an exposition period of 5 days (i.e.,
1/σ ) into account, and similar infection β and recovery γ rates. Among the two structures,
the breakout is quicker in the ER model than in the BA one (Figs. 5(a) and 6(a)), and
such a difference continues to be observed among the other incremental modules. However,
adding a re-infection parameter s, the effect is visible in the only BA model (Figs. 5(b)
and 6(b)).

Introducing testing allows us to shift to the UTR module, where exposed and infected
agents can be tested with probabilities ϑE and ϑI , and with the possibility to get false pos-
itives with probability κE and κI . We used the same parameter values for our synthetic
networks without differentiating between exposed and infected people, also considering
a very low probability of getting false positives. For simplicity, we set the recovery rate
γT equal to γ . In any case, the effect of quarantine (i.e., identified exposed and identi-
fied infected agents) is visible by observing the plateau of the susceptible population curve
(Figs. 5(c) and 6(c)), in both the two networks.

We then shift to the UTLR model compartment by specifying the two parameters that
regulate social distancing/lockdown, i.e., the population adherence to the restrictions τ and
the escape probability of the social distanced individuals μ; Here, we decide to report a
scenario with high adherence to the imposed restrictions and a low escape probability to
make more visible the differences between the first 50 iterations and the remaining ones
where lockdown restrictions are imposed. Susceptible and infected social distanced agents
permit to stop the breakout, then the infection can restart (Figs. 5(d) and 6(d)). No significant
differences are observed among the two different topologies used in our experiments, except
for the already underlined faster breakout in the ER model.

To finally introducing the UTLDR model, we specify the expected death rate. We decide
to set a particularly high death rate ω = 0.05 (imposing a same value for ωT ) so to observe
better a sharp death trend - as underlined in Figs. 5(e) and 6(e). Finally, in Figs. 5(f) and
6(f), a simple parameter setting for ICU modeling is used, i.e., the number of ICU b as the
same as the agents in the networks, and a high percentage of ICU needs ι.

Focusing our attention on a qualitative analysis of the trends reported in Figs. 5 and 6,
we can notice the rise of different novel patterns for the infected population whenever a new
policy is introduced. It is important to underline that starting from UTR such population
identifies the fraction of infected individuals that were not detected by the testing: namely,
the ones that are not captured by targeted interventions (e.g., testing, quarantine, hospital-
ization). The reported trends illustrate how - as expected - such a population reduces as
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more stringent restrictions and policies are set in place. Moreover, the introduction of Lock-
downs causes a sudden and temporary drops of new infections (due to the limited social
contacts). Indeed, when restrictions are lifted, as expected, the infected population grows
again due to the incomplete eradication of the disease and the available “fuel” provided by
the Susceptible individuals.

4.2 Implicit network structure

Differently from the previously discussed scenario, we assume that the social graph is not
known in advance. However, we also assume the presence of a carefully stratified set of
agents designed to approximate the whole population of a given geographical area. In par-
ticular, we perform our simulations on 3,73 million agents stratified to match an Italian
region’s population, Tuscany. The population has been stratified by leveraging official cen-
sus data as provided by ISTAT9. In particular, the following dimensions have been used to
characterize each agent and assign it to the proper geographic/social clusters:

– Age, gender, household size distribution at the census cell level;
– Workplace (public/private sector and NACE code (Schnabl and Zenker 2013)): number

and size distribution at municipality level;
– Unemployment rate - stratified by age - at province level;
– Schools (by order): distribution of the number of classes and students (by age) at the

municipality level.

Moreover, origin-destination matrices were simulated (due to lack of precise data) to
consider mobility probabilities among a three-tiered hierarchy composed of census cells,
municipalities, and provinces. The simulated destination matrices rely only on geographical
proximity, not on observed mobility fluxes.

The data used for this case study (along with stratified populations for all Italian regions),
as well as the fine-tuned implementation of UTLDR, are available on a dedicated GitHub
repository10.

In Fig. 7(a-b), we report the diffusion trends for two different scenarios designed with
UTLDR. Both figures refer to the same model, the only significant variation lying on
the temporal schedule of lockdowns. In particular, the implemented model is completely
specified by the following parameter settings:

– Initial infected population: 0.00002% (� 80 individuals);
– SEIR parameters: β = 0.006, σ = 0.25, γ = γT = 0.04;
– Testing parameters: ϑE = κe = 0 (no testing on exposed), ϑI = κi = 0.1;
– Tracing: Ttracing = 0 (no tracing);
– Lethality: (real) ω = 0.001, (observed) ωT = 0.0015;
– Long-range interactions: p = 0.008;
– ICU: ι = 0.2, b = 200 (pre-lockdown), b = 400 (during)
– Lockdown: τ = 0.9.

9http://dati.istat.it/
10https://github.com/KDDComplexNetworkAnalysis/UTLDR
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Fig. 7 Diffusion trends for the Tuscany case study. All scenarios start with a setup phase of 30 iterations,
during which only UTDR compartments are active. (a) A single lockdown of 90 iterations is activated; (b)
two consecutive lockdown of length 60 and 30 iterations respectively are activated - separated by 30 iterations
of UTDR; (c) The same setting of the previous scenario but the separation among consecutive lockdown is
set to 60 iterations; (d) Same setting of (b) but lockdown lengths are switched

To summarize, the designed model activates both hospitalization and lockdown compart-
ments and allows long-range interactions. Moreover, during lookdowns, mobility is allowed
only within the municipality boundaries, and the only categories not affected by lockdown
policies are the Health workers.

The parameters of the activity driven model (the degree of activeness of each individ-
ual) are set by stratifying per age groups and social context (home census cell, workplace,
school). For instance, we assume for agents with age within [10-25] the following active-
ness scores [“workplace”=0, “home census cell”=0.05, “school”=0.9], while for those ones
in the age range [25-50] the scores [“workplace”=0.4, “home census cell”=0.1, “school”=0].
We underline that the proposed simulation, although feed with ”realistic” population data it
is not fitted to replicate any specific epidemic process (e.g., Ebola, SARS-CoV-2).

Leveraging the described model, we design four different scenarios, each composed of
180 iterations (one per full day). For the sake of simplicity, we report the trends only for
a few compartments, namely: Infected (undetected), Hospitalized mild (quarantined), Hos-
pitalized severe ICU, Hospitalized severe (patients requiring ICU but assigned to standard
care for lack of beds), and Dead. The total of ill individuals - during each iteration - is given
by the sum of the first four compartments. Exposed and Recovered populations are omitted
so to increase readability.

In the first scenario, shown in Fig. 7(a), after an initialization phase of 30 iterations - com-
mon to all proposed simulations -, where only testing is enabled, a lockdown of 90 iterations
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is imposed. In the second scenario (Fig. 7(b)), two consecutive lockdowns are activated:
one right after the initialization phase - for 60 iterations -, the other 30 iterations after the
deactivation of the previous one (and lasting for 30 iterations). The third scenario follows
the same pattern of the previous one while increasing the distance among the two imposed
restrictions from 30 to 60 iterations (Fig. 7(c)). Finally, in the fourth scenario, the lockdown
strategy designed in the second one are switched: imposing at first a 60 iterations lockdown
and then, after 30 iterations, a new shorter one of 30 iterations (Fig. 7(d)). The reported
trends clearly highlight how the length and scheduling of public interventions deeply affect
the persistence of the simulated epidemic process - even while maintaining fixed the model
describing it. In the first and second scenarios, after a long closure, the epidemic completely
dies out; conversely, in the third and fourth scenarios, the repeated lockdown is not enough
to stop the diffusion. It is worth noticing that due to the stochasticity introduced by het-
erogeneous mixing patterns (and random infection seeds) the overall scale of the reported
trends might vary from an execution to another: however, such variations in volume do not
deeply affect the observed trends shape, producing only minor point-wise fluctuations.

5 Conclusion and future works

This paper introduced a framework, namely UTLDR, to allow an incremental description
of compartmental epidemic models incorporating diffusion mitigation strategies. UTLDR
segments the compartments it provides in five macro classes (Undetected, Tested, Lock-
down, Recovered, and Dead), each one identifying a set of interventions/outcomes. After
discussing the compartments, transition rules among them, and controlling parameters, we
provided a few examples of models that UTLDR allows to build - ranging from simple Test-
ing and Hospitalization to Lockdown and Social Distancing. Moreover, we also showed how
additional compartments could be easily added to UTLDR models to simulate vaccination
strategies and inefficient corpse disposal.

We formulated UTLDR in a conventional mean-field scenario (as reported in Appendix
A): however, to account for heterogeneous mixing-patterns, we also discussed its extension
to complex network topologies. We modeled such a scenario with an activity-driven network
approach, allowing as inputs both explicit and implicit social tissues that dynamically update
during the model simulation. Moreover, we designed UTLDR to allow stratified parameter
settings on top of population characteristics (e.g., age, gender. . . ) and, at the same time, to
incorporate aggregate human mobility information (as origin-destination matrices) to better
account for geographic contacts limitations. Finally, we provided case studies to qualita-
tively discuss a subset of the models built on top of UTLDR, focusing on the framework
explicit and implicit network extension. Conversely from recent works focusing on SARS-
CoV-19 pandemic (Estrada 2020; COVID et al. 2020; Naik et al. 2020; Sarkar et al. 2020;
Bastos and Cajueiro 2020; Karnakov et al. 2020; Prem et al. 2020; Perra 2021), UTLDR is
not intended to be a epidemic-specific model. The proposed framework has been conceived
as a tool enabling the definition of custom compartmental models tailored to integrate, and
qualitatively estimate, the expected effects of non-pharmaceutical interventions.

As future work, we plan to extend the Tuscany case study analysis to other Italian regions
and define a model focused on SARS-CoV-2 scenario generation. Moreover, we plan to
release an online dashboard to support a visual setup of UTLDR models simulation and
visual inspection of their results.
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Appendix A: Mean Field Formulation

A.1 Testing and quarantine

In the closed population, with no births or deaths, the UTR model can be described as
follows:

dS

dt
= −βSI

N
dE

dt
= βSI

N
− σE − ϑEκEE

dI

dt
= σE − ϑI κI I − γ I

dET

dt
= ϑEκEE − σET

dIT

dt
= σET + ϑI κI I − γT IT

dR

dt
= γ I + γT IT

where N = S + E + ET + I + IT + R is the total population.

A.2 Lockdown

In the closed population, with no births or deaths, the UTLR model can be described as
follows:

dS

dt
= −βSI

N
− τS + μSL

dSL

dt
= −βSLIL

N
+ τS − μSL

dE

dt
= βSI

N
− σE − ϑEκEE

dEL

dt
= βSLIL

N
− σEL − ϑEκEEL

dET

dt
= ϑEκEE − σET + ϑEκEEL

dI

dt
= σE − ϑI κI I − γ I

dIL

dt
= σEL − ϑI κI IL − γ IL

dIT

dt
= σET + ϑI κI I − γT IT + ϑI κI IL

dR

dt
= γ (I + IL) + γT IT

where N = S + SL + E + EL + ET + I + IL + IT + R is the total population.
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A.3 Dead state

The UTLDR model considering the Dead compartment becomes:

dS

dt
= −βSI

N
− τS + μSL

dSL

dt
= −βSLIL

N
+ τS − μSL

dE

dt
= βSI

N
− σE − ϑEκEE

dEL

dt
= βSLIL

N
− σEL − ϑEκEEL

dET

dt
= ϑEκEE − σET + ϑEκEEL

dI

dt
= σE − ϑI κI I − γ I − ωI

dIL

dt
= σEL − ϑI κI IL − γ IL − ωIL

dIT

dt
= σET + ϑI κI I − γT IT + ϑI κI IL − ωT IT

dR

dt
= γ (I + IL) + γT IT

dD

dt
= ω(I + IL) + ωT IT

where N = S + SL + E + EL + ET + I + IL + IT + R + D is the total population.

A.4 ICU limitations

The UTLDR model integrating ICU limitations becomes:

dS

dt
= −βSI

N
− τS + μSL

dSL

dt
= −βSLIL

N
+ τS − μSL

dE

dt
= βSI

N
− σE − ϑEκEE

dEL

dt
= βSLIL

N
− σEL − ϑEκEEL

dET

dt
= ϑEκEE − 2σET + ϑEκEEL

dI

dt
= σE − ϑI κI I − γ I − ωI

dIL

dt
= σEL − ϑI κI IL − γ IL − ωIL
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dIT

dt
= σET + ϑI κI I − ibIT − γ IT − ωIT

dHT

dt
= σET + ϑI κI IL + ibIT − γT HT − ωT HT

dR

dt
= γ (I + IL + IT ) + γT HT

dD

dt
= ω(I + IL + IT ) + ωT HT

where N = S + SL + E + EL + ET + I + IL + IT + HT + R + D is the total population.

A.5 Corpse disposal efficiency

The UTLDR model integrating corpse disposal becomes:

dS

dt
= −βSI

N
− τS + μSL + zD

dSL

dt
= −βSLIL

N
+ τS − μSL

dE

dt
= βSI

N
− σE − ϑEκEE

dEL

dt
= βSLIL

N
− σEL − ϑEκEEL

dET

dt
= ϑEκEE − 2σET + ϑEκEEL

dI

dt
= σE − ϑI κI I − γ I − ωI

dIL

dt
= σEL − ϑI κI IL − γ IL − ωIL

dIT

dt
= σET + ϑI κI I − ibIT − γ IT − ωIT

dHT

dt
= σET + ϑI κI IL + ibIT − γT HT − ωT HT

dR

dt
= γ (I + IL + IT ) + γT HT

dD

dt
= ω(I + IL + IT ) + ωT HT − zD

where N = S + SL + E + EL + ET + I + IL + IT + HT + R + D is the total population.

A.6 Partial immunity

The UTLDR model integrating partial immunity becomes:

dS

dt
= −βSI

N
− τS + μSL + zD + sR

dSL

dt
= −βSLIL

N
+ τS − μSL

dE

dt
= βSI

N
− σE − ϑEκEE
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dEL

dt
= βSLIL

N
− σEL − ϑEκEEL

dET

dt
= ϑEκEE − 2σET + ϑEκEEL

dI

dt
= σE − ϑI κI I − γ I − ωI

dIL

dt
= σEL − ϑI κI IL − γ IL − ωIL

dIT

dt
= σET + ϑI κI I − ibIT − γ IT − ωIT

dHT

dt
= σET + ϑI κI IL + ibIT − γT HT − ωT HT

dR

dt
= γ (I + IL + IT ) + γT HT − sR

dD

dt
= ω(I + IL + IT ) + ωT HT − zD

where N = S + SL + E + EL + ET + I + IL + IT + HT + R + D is the total population.

A.7 Vaccination

The UTLDR model integrating vaccination strategies becomes:

dS

dt
= −βSI

N
− τS + μSL + zD + sR − vS + f V

dV

dt
= vS + vSL − 2f V

dSL

dt
= −βSLIL

N
+ τS − μSL − vSL + f V

dE

dt
= βSI

N
− σE − ϑEκEE

dEL

dt
= βSLIL

N
− σEL − ϑEκEEL

dET

dt
= ϑEκEE − 2σET + ϑEκEEL

dI

dt
= σE − ϑI κI I − γ I − ωI

dIL

dt
= σEL − ϑI κI IL − γ IL − ωIL

dIT

dt
= σET + ϑI κI I − ibIT − γ IT − ωIT

dHT

dt
= σET + ϑI κI IL + ibIT − γT HT − ωT HT

dR

dt
= γ (I + IL + IT ) + γT HT − sR

dD

dt
= ω(I + IL + IT ) + ωT HT − zD

where N = S +SL +V +E+EL +ET +I +IL +IT +HT +R+D is the total population.
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