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A B S T R A C T   

Human memory is a complex system that works in associative ways: Reading a cue word can lead to the 
recollection of associated concepts. The network structure of memory recall patterns has been shown to contain 
insights about a wide variety of cognitive phenomena, including language acquisition. However, most current 
network approaches use pairwise connections, i.e. links between only two words at a time. This ignores the 
possibility that more than two concept representations might be simultaneously associated in memory. We 
overcome this modelling limitation by introducing cognitive hypergraphs as models of human memory. We model 
memory recall patterns through word associations from the Small World of Words project for N=6003 concepts 
(Study 1) and for N=497 concepts (Study 2). In each study we represent word associations as either a pairwise 
network or a hypergraph. By combining psycholinguistic norms and network centrality measures with machine 
learning, we quantitatively investigate whether there is any benefit to using the hypergraph model over a 
pairwise network in predicting test-based age of acquisition norms in children up to age 9 years (Study 1) or 
normative learning in toddlers up to age 30 months (Study 2, based on CHILDES data). We show that cognitive 
hypergraphs capture more information than pairwise networks from the same data: Cognitive hypergraphs are 
considerably more powerful than pairwise networks at predicting age of acquisition trends in toddlers, children 
and teenagers. Our studies showcase how novel approaches merging artificial intelligence and higher-order 
interactions can help us understand cognitive development.   

1. Introduction 

Language learning implies building conceptual representations of 
words in the human mind (Skehan, 1998). These representations 
constitute a cognitive dictionary, a mental lexicon where knowledge is 
stored and processed (Aitchison, 2012). Unlike brain tissues, this 
cognitive system cannot be directly accessed nor tinkered with within a 
lab setting. Exploring the structure of associations between conceptual 
representations requires the mediation of knowledge-related tasks that 
involve the mental lexicon (Aitchison, 2012; Castro & Siew, 2020). Free 
associations (Nelson et al. 2000, 2003; Wilson & Kiss, 1988) represent a 
cognitive task that is becoming increasingly popular in: (i) investigating 

the associative organisation of concepts in the mental lexicon (De Deyne 
& Storms, 2008; Steyvers & Tenenbaum, 2005) and, (ii) exploring the 
interplay between the structure of conceptual associations and cognitive 
phenomena like language learning (Hills et al., 2009) and processing (De 
Deyne et al., 2013). Specifically, free associations represent memory 
recall patterns from the mental lexicon and can be gathered through 
empirical recall tasks (Brysbaert et al., 2000; Stella et al., 2019; Wilson 
& Kiss, 1988). In the continuous free association task introduced by (De 
Deyne et al., 2013), an individual reads a cue (e.g. “pen”) and is asked to 
produce the first 3 associations that come to their mind (e.g. “letter”, 
“paper”, “writing”). These associations do not explicitly follow specific 
requirements (e.g. consider only associations that are synonyms) and 
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represent the outcome of recall processes from human memory, which 
can be modelled in different ways, e.g. through a signal originating on 
the cue and spreading through its conceptual associates (see Nelson 
et al., 2003). Free associations can map memory recall patterns from the 
cognitive knowledge available to an individual (Wulff et al., 2022). 
Several works indicate that free associations can map how conceptual 
representations are associated inside human memory, providing a 
network proxy, that is, a model approximating the structure of asso
ciative knowledge, cf. (Kumar, 2021). 

Modelling free associations as a network leads to a representation of 
memory where nodes represent concepts and links indicate their recall 
from memory (De Deyne & Storms, 2008; Steyvers & Tenenbaum, 
2005). Recent advancements at the interface of psychology and network 
science have highlighted the benefit of modelling free associations as a 
cognitive construct related to a variety of cognitive phenomena (Kenett 
et al., 2018). The availability of large-scale datasets for free associations, 
like the Edinburgh Associative Thesaurus (Wilson & Kiss, 1988), the 
Florida Free Association Norms (Nelson et al., 2004) and, more recently, 
the Small World of Words (De Deyne et al., 2019), have enabled over 20 
years of data-informed studies about cognitive modelling with free as
sociations. Networks of free associations/memory recall patterns can 
shed light on a wide range of cognitive phenomena (Wulff et al., 2022). 
The number of free associations of individual words was shown to be 
predictive of early language learning in toddlers (Hills et al., 2009; Stella 
et al., 2017; Citraro et al., 2023). More free associations also corre
sponded to facilitative patterns in lexical identification tasks in healthy 
adults (i.e. distinguishing words from non-words in the shortest time 
possible) (De Deyne et al., 2013). The smallest number of free associa
tions separating any two concepts was found to be predictive of semantic 
relatedness, outperforming other state-of-art models in psychology like 
latent semantic analysis (Kenett et al., 2017; Kumar et al., 2020). 

All of the above studies used pairwise networks to model free asso
ciation data, i.e. networks where links can connect only two nodes at a 
time (Newman, 2018). Pioneering work by De Deyne and colleagues (De 
Deyne et al., 2013) showed that across several lexical identification 
tasks, pairwise networks considering only links between a cue and its 
associations outperformed other pairwise ways of linking free associa
tions in predicting several lexical processing tasks. However, cognitive 
models that permit only two items to interact with each other at a time 
can be quite limiting. In the continuous task, up to three items are 
recalled after reading a cue and this process might indicate interactions 
(potentially with different strengths) taking place between all concepts 
rather than between couples of them (De Deyne et al. 2013, 2019). In 
continued free association tasks, past investigations reported consider
able evidence that first responses are more semantically related to cues, 
whereas such similarity decreases for second and third responses (Bruza 
et al., 2009; Nelson et al., 2003). This difference motivated the creation 
of models for serial recall, like Entanglement and 
Spooky-action-at-a-distance, including differences in the ways first and 
subsequent responses are generated (see for more details Nelson et al., 
2003 and Galea et al., 2011). Although these approaches discuss signals 
spreading according to concept similarity and not based on a more 
specific network structure, they are relevant from a network perspective, 
since they highlight a limitation of pairwise network models for free 
association data. The latter builds links between a cue and all its re
sponses, however evidence from Galea et al. (2011) indicates that the 
link between a cue and its first response should be qualitatively different 
from other links (between the same cue and subsequent responses). Not 
building links between pairs of words while still clustering them as a 
single recollection might address such a limitation. 

This work aims to introduce and investigate cognitive hypergraphs 
as a novel idea in psychology to cluster recollections together and thus 
model the structure of memory recall patterns from the mental lexicon 
and compare it against pairwise networks to predict language learning 
in children/teenagers (Study 1) and toddlers (Study 2) within a machine 
learning framework. 

1.1. Related literature 

Network science is the field concerned with understanding a system 
by analysing the relations between its components (Newman, 2018; 
Siew et al., 2019). In any network, nodes/vertices represent the indi
vidual units of the system being represented (e.g. concepts in memory) 
and are connected by edges/links, representing interactions between 
units (e.g. memory recalls). Complex networks were extensively adopted 
to model human memory already in the 1970s, see also the review by 
(Castro & Siew, 2020). Networks were used to describe data storage 
hierarchies in early computers that could be applied to modelling 
human memory, see for instance (Quillian, 1967). The pioneering work 
by Collins and Loftus reviewed these early approaches and suggested a 
cognitive model for lexical retrieval based on a network of semantic 
feature sharing between concepts, e.g. “cat” and “dog” sharing the 
feature “having a tail” and thus being linked (Collins & Loftus, 1975). 
However, the authors did not test how their model performed on 
empirical data, and complex networks gained more attention in psy
chology only thirty years later (Siew, 2020; Siew et al., 2019). Steyvers 
and Tenenbaum built three semantic networks, including one of free 
associations with more than 6000 English words (Steyvers & Ten
enbaum, 2005). Importantly, Steyvers and Tenenbaum showed how 
pairwise networks of free associations could become computational 
frameworks for understanding language learning dynamics. The authors 
showed how the degree of words in these networks, i.e. the number of 
links of a word, could explain variance in empirical age of acquisition 
ratings. These results were replicated on a larger dataset by (De Deyne & 
Storms, 2008), who also found significant negative associations between 
degree and self-reported age of acquisition ratings: Words reported to be 
acquired earlier tended to have more free associations. Analogous re
sults were also found in early language learning, as measured in toddlers 
between 18 and 30 months of age (Hills et al., 2009; Stella et al., 2017): 
Degree in free associations was found to be more predictive of the 
normative age of acquisition ranking of words compared to degree in 
other networks made of synonyms (where concepts are linked if over
lapping in meaning) or of phonological similarities (where concepts are 
linked if differing by the addition/substitution/deletion of one 
phoneme). A similar result held also for closeness centrality, i.e. the 
inverse average network distance between a node and all the others 
connected to it (Newman, 2018). How could one interpret these patterns 
from a psychological perspective? Degree and closeness centrality cap
ture, respectively, the number of links and the mental shortcuts (i.e., 
shortest paths) a node is involved in. Having more associations and 
being linked to other concepts through fewer associations are measures 
of prominence within memory (Kumar, 2021). Higher degree/closeness 
corresponding to earlier acquisition might thus reflect a tendency for 
humans to learn more prominent concepts in memory first, a cognitive 
strategy known as preferential acquisition (Hills et al., 2009; Siew & 
Vitevitch, 2020). 

The above works relied consistently on pairwise networks. Pairwise 
links involve only two nodes and this can be a modelling limitation when 
considering the mental lexicon: Mental search processes might include 
multiple categories of conceptual similarities at once (Aitchison, 2012; 
Hills & Kenett, 2022; Kumar, 2021), so that the recalls should be 
considered as a single entity (e.g. {“pen”, “letter”, “paper”, “writing”}, 
where “pen” is the cue and the latter 3 concepts are responses to the cue) 
rather than as distinct links (e.g. {“pen”, “letter”}, {“pen”, “paper”}, 
{“paper”, “writing”}). Hypergraphs can account for these types of 
structures. Hypergraphs are complex networks where multiple nodes 
can co-exist within the same link, called a “hyperedge” (Battiston et al., 
2020). Introduced in the 1970s (Berge, 1973), hypergraph models 
received considerable attention in quantitative modelling only within 
the last few years, mainly thanks to the growth of statistical models of 
hypergraph construction and analysis (Battiston et al., 2020; Young 
et al., 2021; Musciotto et al., 2021). For a clear and extensive review of 
hypergraph models, we refer the interested reader to the work of 
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Battiston and colleagues (Battiston et al., 2020). Noticeably, their re
view contains a gap: applications of hypergraph models in psychology 
and the cognitive sciences. 

Pairwise networks disregard relationships of conceptual similarities 
between recalls in free association data because such relationships did 
not provide significant information across explaining variance in several 
lexical tasks (cf. De Deyne et al., 2013). Going beyond pairwise net
works, hypergraphs can encode conceptual similarities between serially 
recalled responses within a single hyperlink, i.e. a generalisation of a 
link that connects more than 2 concepts at once. Encapsulating cues and 
responses within a single hyperlink provides a representation of memory 
recall patterns going beyond cue-response relationships, as encoded in 
pairwise links, and including conceptual similarities due to memory 
recall processes (the weak conceptual relationships present between 
responses). In contrast to pairwise networks, hyperlinks encode infor
mation about which groups of responses were associated to a given cue: 
in pairwise networks, once links are built, there is no information about 
how cues and responses clustered together, and whereas such knowl
edge about concept clustering, reflecting mental search processes (Hills 
& Kenett, 2022), is indeed preserved by hyperlinks. This crucial differ
ence makes hypergraphs different from pairwise networks and poten
tially more suitable for modelling how conceptual similarities can 
influence memory recall and other cognitive patterns. 

Imposing a pairwise network, where associations are encoded by 
links connecting two items at a time, might be a modelling assumption 
unable to account for the simultaneous presence of multiple categories 
of associations in human memory. As discussed in (De Deyne et al., 
2013), continued free associations constitute a serial recall of items from 
memory. Recent research showed that serial recall from memory follows 
a foraging strategy (cf. Hills & Kenett, 2022): mental search identifies 
candidates for recall mostly in a cluster of concepts sharing several se
mantic features; however, after the search exhausted all such candidates 
(i.e. after foraging depletes a patch), a transition to a different cluster is 
performed. Consequently, serial recall will produce groups of items that 
are conceptually related, albeit weakly (De Deyne et al., 2019; Kumar, 
2021). 

Hypergraphs are mathematical objects where hyperedges encode 
interactions between any number of nodes at a time (Battiston et al., 
2020; Berge, 1973), and have recently proven to be a useful tool for the 
analysis of many real-world relational systems across a variety of do
mains. Indeed, higher-order (non-pairwise, multiple) interactions were 
found to be ubiquitous in a wide range of systems, including group 
formation in face-to-face human (Cencetti et al., 2021) and animal 
(Musciotto et al., 2022) social networks, collaboration systems (Patania 
et al., 2017), ecosystems (Grilli, Barabás, Michalska-Smith, & Allesina, 
2017) and even the human brain (Santoro et al., 2022). Moreover, 
taking into account the presence of such non-pairwise interactions has 
allowed us to better understand the function and behaviours of different 
systems (Battiston et al., 2021), from the diffusion of information 
(Iacopini et al., 2019) to the emergence of human cooperation (Alvar
ez-Rodriguez et al., 2021) in networked populations. Surprisingly, 
hypergraphs and their potential to properly describe non-pairwise as
sociations have been largely neglected in the case of cognitive systems. 
Operationally, cognitive hypergraphs allow to represent free associa
tions among an arbitrary number of items as hyperedges, without the 
need to decide for any specific pairwise network construction (e.g. build 
links only between a cue and its associations). 

1.2. Outline of paper 

This paper aims to introduce and test hypergraph networks of free 
associations in predicting age of acquisition norms. Through machine 
learning, two studies will investigate the potential benefit of hyper
graphs over pairwise networks for predicting either continuous (Brys
baert & Biemiller, 2017) or ordinal (Stella et al., 2017) age of acquisition 
(AoA) data. Both a pairwise network and a hypergraph will be 

constructed using free associations from the Small World of Words (De 
Deyne et al., 2019). Degree and closeness centrality of individual con
cepts in these networks will be used as features for a machine learning 
regression of 6000 continuous AoA norms (Study 1) and for a rank 
prediction task of 500 ordinal AoA norms (Study 2). These aspects are 
described in the Methods section. Using model performance assessment 
we will test which representation of human memory provides the better 
sets of features for interpreting AoA data (Results). Our findings and the 
importance of individual features will be discussed with respect to the 
relevant psychology literature (Discussion), and finally we introduce 
cognitive hypergraphs as an innovative modelling framework of cogni
tive processes (Conclusions). 

2. Materials and methods 

In this section we describe the datasets and the methods used to build 
the pairwise/hypergraph networks and set up the machine learning 
section. Data and methods are different across the two studies. The first 
study uses word association data from (De Deyne et al., 2019) to predict 
continuous words’ age of acquisition from (Brysbaert & Biemiller, 
2017). The second study uses the same word association data to predict 
ordinal age of acquisition as ranked by the CHILDES Project dataset 
(MacWhinney, 2000). Pairwise networks and hypergraph representa
tions of the same word association dataset are used to extract words’ 
centralities as features for machine learning. 

2.1. The network science of pairwise networks and hypergraphs 

This section serves as an introduction for the formalism used 
throughout Study 1 and 2. 

Graph notions. A graph G = (V,E) is composed of a set V of nodes 
and a set E of edges which are unordered pairs of elements of V (New
man, 2018). The connections between nodes exist on a pairwise basis, i. 
e. an edge connects exactly two nodes together. An example of a graph 
with six nodes is shown in Fig. 1 (left). In our formalism, we will use 
“graph”, “pairwise network” and “network” as synonyms. There are 
various measures estimating how ‘central’ a node is within a given 
graph/network. Two of the most common ones are degree and closeness 
centrality (Newman, 2018). Degree centrality measures how well con
nected a certain node is by counting its links. In Fig. 1 (left), node f has a 
degree of 1. To understand closeness centrality, we first define a path 
between nodes i and j as a sequence of links connecting them. In any 
path, nodes can be visited only once. Nodes for which there is at least 
one path connecting them are said to be connected. Then, the closeness 
centrality of a node i is defined as: 

C(i)=
N − 1
∑

j
d(i, j)

, Eq. 1  

where N is the number of nodes connected to i and d(i, j) is the smallest 
number of links connecting i and j, i.e. the network distance (Newman, 
2018). Hence, closeness centrality equals the inverse average network 
distance between one node and all its connected neighbours. The higher 
the closeness C(i), the fewer links that have to be traversed to reach any 
connected neighbour when starting from i. In Fig. 1 (left), node f has the 

Fig. 1. A pairwise network (left) and a hypergraph (right), both with 6 nodes.  
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lowest closeness centrality as it is the furthest apart from all other nodes. 
Hypergraph notions. A hypergraph H = (VH,EH) is composed of a 

set VH of nodes and a set EH of non-empty subsets of V called hyperedges. 
Hypergraphs expand on the traditional graph structure by allowing for 
higher-order interactions between more than two units by means of 
hyperedges. A hypergraph with all hyperedges of size 2 is equivalent to a 
pairwise network/graph. The hypergraph in Fig. 1 (right) has 6 nodes 
connected by 3 hyperedges of sizes 4, 3 and 2. Indeed, the clusters of 
nodes, i.e. the hyperlinks, in Fig. 1 are reminiscent of community 
structure, where nodes in a pairwise network are clustered together. As 
mentioned in the Introduction, a key difference between hypergraphs 
and pairwise networks is that the first preserves information about 
clustering between responses and cues, i.e. how many responses were 
provided together to a given cue. 

We can define degree and closeness centrality on hypergraphs as well 
(Battiston et al., 2020). Node degree in hypergraph is still a count of how 
many hyperedges contain a given node. Distance-based computations, 
like closeness, on hypergraphs can be made less computationally 
demanding by recasting hyperedges into a bipartite data structure 
(Aksoy et al., 2020). We leverage on the vertex-based notion of the 
s-framework for hypergraphs (Aksoy et al., 2020) by computing Equation 
(1) on the node-projection of a hypergraph. Any hypergraph can be 
represented as a bipartite data structure such that VH and EH are two 
distinct sets and the elements of VH are connected to the elements of EH 
according to how nodes are sorted in hyperedges. We want to compute 
the closeness of elements of VH so we can focus on them through a 
node-projection, i.e. simplifying the bipartite structure by considering 
only nodes and linking them if they share at least s connections with 
elements of VH in the bipartite data structure. In other words, (i) the 
node-projection of the hypergraph is a data structure where nodes are 
connected if they share at least s hyperedges; (ii) the closeness formula 
provided in Equation (1) is applied on this different structure, where the 
s-prefix highlights the width/strength of connectivity between two 
nodes. With s = 1, node f is connected to nodes e and c in the 
node-projection of the hypergraph in Fig. 1 (right), because the three 
nodes share the hyperedge E3. Thus, f’s 1-closeness is higher than its 
corresponding closeness in the graph structure. With s = 2, however, 
node f loses all its connections, not allowing computing f’s 2-closeness. 
The parameter s can be thought of as the width of connection between 
two nodes, assuming that nodes sharing more hyperedges are tighter 
than nodes sharing less hyperedges. The parameter s can be tuned be
tween the minimum and maximum sizes of hyperedges, thus leading to a 
set of closeness scores for a single node (e.g. one for s = 1, one for s = 2 
and one for s = 3). Closeness centralities will indicate how closely 
connected one node is to its neighbours when different higher-order 
mechanisms are considered (Aksoy et al., 2020). 

Evaluation of machine learning models. For model assessment we 
use the following measures (Alpaydin, 2020): the Kendall’s tau corre
lation coefficient (τ), the Pearson’s correlation coefficient (ρ), the Root 
Mean Squared Error (RMSE), the Coefficient of Determination (R2), and 
the normalised Discounted Cumulative Gain (NDCG). These values es
timate a model’s ability at predicting the desired output (Alpaydin, 
2020). Kendall’s tau correlation coefficient measures the degree of 
agreement between two columns of ranked data, with a value of 0 rep
resenting no correlation and a value of 1 representing a perfect corre
lation. Pearson’s correlation coefficient is another statistical measure of 
the strength of relationship between two variables that measures how 
close the data points are to a line of best fit. It can take any value in the 
range [− 1,1] with − 1 representing a perfect negative correlation, +1 a 
perfect positive correlation, and 0 no correlation. The root mean squared 
error (RMSE) is a measure of error which is calculated as the square root 
of the averaged sum of squares of the error between predicted values and 
the true values. The coefficient of determination (R2) is a regression 
score, with a value of 1 being the best. It measures the proportion of 
variance that is predicted by the regressor. Finally, the normalised dis
counted cumulative gain (NDCG) is a measure of rank strength that gives 

the higher ranked values a greater score. It can take any value in the 
range [0,1], with 1 being a perfect score. 

2.2. Network data and construction 

Data description and cleaning. We use word association data from 
the Small World of Words (SWoW) project (De Deyne et al., 2019). SWoW 
is an online large-scale database modelling multilingual mental lexicons 
through a memory recall game, where participants are asked to respond 
with at most 3 words that come to mind given a cue word (e.g. what do 
you think of when reading “letter”?). In Study 1 and 2 we use the English 
SWoW dataset, with more than 1.2 million responses structured as lists 
{“cue”, “association_1”, “association_2”, “association_3”}, e.g. {“pen”, 
“letter”, “writing”, “ink”}. 

Association data are complemented by words’ age of acquisition 
(AoA) norms. In Study 1, we use the continued age of acquisition values 
from (Brysbaert & Biemiller, 2017), obtained by directly asking adults 
about their knowledge of words at various ages. We focus on early 
language learning, considering words acquired before age 9 years. This 
threshold was selected based on results by (Stella et al., 2018), who 
showed a drastic shift in word learning strategies based on network 
structure after that age. In Study 2, we use ordinal age of acquisition 
values as ranked by the CHILDES Project dataset (MacWhinney, 2000) 
and previously used in (Stella et al., 2017). Normative word learning is 
represented as a ranking: Words in top positions were found to be pro
duced by more children, in child-adult conversations, at an earlier age in 
months. This dataset focuses on normative early language learning be
tween 18 and 30 months. We use the words in these two datasets to filter 
out the SWoW data and reduce the computational costs for building 
networks and computing node centralities. Hence, data filtering is 
contextual to the performed task: Of the 13000+ cue words in the SWoW 
data, 6003 were used in Study 1, while 497 were used in Study 2. 

Network construction. We build the pairwise and the higher-order 
network representations by leveraging the word association data. For 
the pairwise network construction, word associations are processed into a 
list of pairwise connections, where the cue word was connected to each of 
the subsequent user-inputted responses. Thus, the cue and response 
words are connected as in Fig. 2 (a), i.e., as in the R123 procedure used in 
the original reference paper (De Deyne et al., 2019). For instance, if 
participants’ data associate the cue “book” with the responses “fairy” and 
“horror”, then the links “book” - “fairy” and “book” - “horror” are built. De 
Deyne and colleagues showed that this approach led to networks with the 
highest explanatory values for several psycholinguistic tasks (see De 
Deyne et al., 2019 for more details). For the hypergraph construction, for 
each recall list, cue and responses are connected by means of a single 
hyperedge, as in the toy example of Fig. 2 (b). For instance, with reference 
to the above example, a single hyperlink of size 3 would be built, i.e. 
{“book”, “fairy”, “horrow”}. Notice how the size of the hyperlink reflects 
the number of associates provided for a given cue. Once built, links in a 
pairwise network are always size 2 (i.e. they include two nodes). Instead, 
hyperlinks built from free association data can have size 2, 3 or 4, ac
cording to how many responses were given to a given cue. An example of 
the real hypergraph instead is shown in Fig. 2 (c). We have |V | =6003 and 
|E| = 229505 for the pairwise network and |VH | = 6003 and |EH| =
207915 in Study 1. For Study 2, we have |V | = 497 - |E| = 3112 for the 
pairwise network and |VH| = 497 and |EH| = 2649 for the hypergraph. 
The NetworkX Python package (https://networkx.org/, Accessed: 
02/02/2022) was used to build the pairwise graph models of word as
sociations, and HyperNetX for the hypergraph models (https://pnnl.gith 
ub.io/HyperNetX/build/index.html, Accessed: 02/02/2022). Notice 
that in the underlying free association data, only 90.5% of concepts were 
featured as both cues and responses, meaning that roughly 1 in 10 con
cepts were only considered as a response. Not being given the chance for a 
given concept to be featured as a cue creates some sampling biases that 
make it difficult to consider directionality as psychologically relevant 
information. For this reason, we considered undirected pairwise 
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networks - as in previous approaches (Hills et al., 2009; Kenett et al., 
2018; Stella et al., 2019) - and undirected hypergraphs. 

Machine learning setting. Logistic regression, support vector ma
chines and random forests (Alpaydin, 2020) were tested in Study 1 but 
only random forests provided R2 higher than 0 when trained on the 
features reported in the following. All models tested here were imple
mented in scikit-learn 1.2.1 in Python. The random forest regressor was 
trained using only one network centrality feature (i.e. node degree) and 
two psycholinguistic features (word frequency and length). Previous 
works on normative learning in children older than 30 months found 
that degree and closeness provided equivalent results and were redun
dant (Stella et al. 2017, 2018). Hence, in Study 1 we used degree as the 
only network feature of the regressor. The logarithm of word frequency 
and word length were found to be the most important features in 
regression tasks for the AoA norms at hand (Brysbaert & Biemiller, 
2017), and were thus included as features. Other psycholinguistic norms 
like polysemy (Stella, 2019) were left out for the sake of model 
simplicity. In general terms, random forests partition data points ac
cording to their features to construct an ensemble of decision trees 
(Alpaydin, 2020). Such an ensemble, or forest, is then adopted to create 
multiple estimates which are rather robust to noise. The regressor was 
tuned to use 150 trees and a mean squared error criterion for measuring 
the quality of a split. The aim of this regressor was to reproduce the 
numerical values of the AoA norms by (Brysbaert & Biemiller, 2017). 

For Study 2, we used an XGBoost ranker to reproduce the ranking in 
which concepts are acquired by most children over time. Over a given 

ranking, XGBoost works to produce an optimal ranking objective func
tion (Alpaydin, 2020), which learns how to reproduce a given ranking of 
data points (concepts in our case) through a set of numerical features (e. 
g. network centralities of concepts). The aim of this ranking method was 
to reproduce the normative learning order/ranking in which most 
children in the CHILDES dataset learned concepts over time. XGBoost 
was configured to use 150 estimators and a learning rate of 0.2, selected 
by computing the error rate with a varied learning rate and choosing a 
value that gives the smallest error. The ranker is trained using degree 
and s-closeness centrality (s=1,2,3). Previous work found that word 
frequency and length provided very limited insights for reproducing the 
normative age of acquisition normative ranking (Stella et al., 2017). 
Hence, for the sake of model simplicity, we neglected these features and 
concentrated only on degree and closeness, which previously predicted 
the normative ranking to different extents within very early language 
learning (Stella et al., 2017). 

The different features adopted in Study 1 and Study 2 make the 
studies unsuitable for direct comparison, due to the different features 
adopted in each study which were selected based on previous work. For 
these reasons, we focus on comparing hypergraphs and pairwise net
works within each study. 

To improve robustness to noise, model results are obtained through a 
Monte Carlo process (Alpaydin, 2020), where results are averaged over 
100 independent trainings of the prediction models, each relative to 
random splits of training/testing data (80% training/20% testing). 
Moreover, to analyse the effect that each feature (e.g. network degree, 

Fig. 2. Graph (a) and hypergraph (b) interaction construction, and an example of a hypergraph piece based on the association data (c).  
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frequency, length or closeness centrality) has on the performance of the 
model, i.e. to estimate feature importance (Alpaydin, 2020), we per
formed feature reshuffling: for each feature, the values of the feature’s 
column in the data were shuffled and the machine learning models 
retrained with the shuffled values. Then, predictions were made after 
the shuffling, and measures calculated. This process was repeated 100 
times to obtain average values of the change in measures for each 
shuffling (cf. Results). Reshuffling and re-training aims to quantitatively 
test how much model performance degrades when each individual 
feature is substituted with noise (having the same mean and variance, 
thanks to the reshuffling process). For instance, by reshuffling node 
degree and comparing model performance against the results from the 
original model, trained on non-shuffled features, we can quantify how 
much degree contributes to the regression/ranking. This reshuffling thus 
implements feature importance analysis (see Alpaydin, 2020). Results 
are reported as mean values presented together with standard errors. 

For model assessment, we consider the Root Mean Squared Error 
(RMSE), Kendall Tau, Pearson’s r coefficient and the R2 measure. We 
also count the percentage Pε of results that are correctly predicted below 
a tolerance ε. In mathematical terms, let us denote with di a datapoint, 
including the features for concept i. The machine learning model maps di 

into an AoA prediction ŷi or an AoA ranking prediction Ŷ i for concept i. 
The RMSE can then be expressed as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i
(ŷi − yi)

2

N

√
√
√
√
√

where N is the number of concepts available in the model and yi is the 
empirical AoA value. The same formula, interpreted as a measurement 
of dispersion, holds for the predicted Ŷ i and the empirical value. Kendall 
Tau and Pearson’s r coefficient are both correlation measures (see 
Alpaydin, 2020), although the latter is based on ranking agreement and 
can thus be easily interpreted when comparing rankings (as we do in 
Study 2). The R2 measure quantifies how much variance observed in the 
empirical AoA values is explained by model prediction, for more details 
see (Alpaydin, 2020). We define Pε as: 

Pε =
# of concepts i such that |ŷi − yi| < ε

N
,

where the numerator counts the number of concepts whose predicted 
AoA norms (or rankings) differ from its empirical value by less than a 
quantity ε (which thus measures years, for Study 1, or rankings, for 
Study 2). Pε thus depends on ε and can give rise to profiles where 
different models can be compared (as we do in Figs. 3 and 4). 

3. Results 

3.1. Study 1: continuous age of acquisition regression 

Table 1 and Table 2 show the results for the pairwise graph and the 
hypergraph models, respectively. The values (columns ‘Original’) 
highlight the benefit of the hypergraph representation against the graph. 
The higher-order representation performs better than the pairwise 
network model, e.g., the hypergraph gives a 6% lower error rate and a 
Kendall tau correlation value 8% higher – cf. also Fig. 3 (left). In addi
tion, Fig. 3 (right) shows the percentage of the predicted results that 
were within a margin ‘epsilon’ of the empirical value. The hypergraph 
model can be seen to have a slight edge, with 59.4% of the predictions 
within ±1 year of the true value, whereas the graph model predicted 
54.7% correctly within the same range. 

In this study, degree is the only network feature used for training. 
Tables 1 and 2 highlight the performances of the two network models 
with respect to each feature shuffling. The shuffling of degree has the 
greatest impact in both cases, with a 6.3% increase in root mean squared 
error on the graph model and a 12.7% increase on the hypergraph 
model. Hence, network degree is the most important feature for the 
model. 

The shuffling of word length and frequency have a minor effect. For 
instance, to verify if this was due to randomness or not, a Mann-Whitney 
U test conducted on these results shows that the change in error from 
word length shuffling on both models is significant at the 5% level 
(U=1705, p=0.0315 for the hypergraph; U=3301, p=0.00086 for the 
pairwise network). Therefore, only word length does have a small effect 
on the prediction. A similarly reduced effect for frequency and length 
over these AoA norms was found also in (Brysbaert & Biemiller, 2017). 

3.2. Study 2: ordinal age of acquisition ranking 

Similar to the previous section, Table 3 and Table 4 show the results 
for the pairwise graph and the hypergraph models respectively. The 
values (columns ‘Original’) highlight the benefit of the hypergraph 
representation against the graph, with a root mean squared error value 
36% lower than that from the graph model and a much higher R2 value 
of 0.6656 versus only 0.1807 from the graph model – cf. also Fig. 4 (left). 
In addition, Fig. 4 (right) shows the percentage of the predicted results 
that were within a margin ‘epsilon’ of the empirical value. The hyper
graph makes 77.1% of the predictions within ±50 positions of the 
empirical rank, whereas the graph model predicts only 36.6% in the 
same range. 

These results provide strong quantitative evidence that the hyper
graph provides more information that correlates with the ordering of 
word acquisition, through the use of degree and s-closeness centrality. 
Notice that the scores for different values of s-closeness (s = 1,2,3) were 

Fig. 3. The relationship between predicted and empirical age for hypergraph and graph models (left) and the percentage of results that are correctly predicted within 
±epsilon years of the empirical value (right). 
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found to be different for less than 5% of the data points and were thus 
averaged over s. In other words, we considered averages of s-centrality 
for different values of s. Notice these averages displayed relative error 
margins - standard errors over mean - lower than 0.01%. Hence, in this 
study, the model used a single average s-closeness value rather than 

3 different ones. 
Tables 3 and 4 highlight the performances of the two network models 

with respect to each feature shuffling. For instance, in the graph-based 
model, closeness centrality has the largest effect on prediction quality 
in the graph model, with a 44.3% increase in RMSE versus only a 10.6% 
increase when the degree column was shuffled. Interestingly, the col
umn shuffling on the hypergraph model shows some apparent increases 

Fig. 4. The relationship between predicted and empirical age rank for hypergraph and graph models (left) and the percentage of results that are correctly predicted 
within ±epsilon rankings of the empirical value (right). 

Table 1 
For a pairwise network model, performance and feature importance results for the regression task. Model performance is based in terms of root mean squared and 
correlations between model’s estimates and empirical AoA norms. The largest absolute difference for each measure is highlighted in bold. Relative to the original 
model, reshuffling node degree degrades performance the most compared to frequency and length.  

Measure Original Performance Degree Shuffled Logarithmic Frequency Shuffled Word Length Shuffled 

Value Difference Value Difference Value Difference 

Root Mean Squared Error 1.3217 1.4045 þ0.0828 1.3503 +0.0286 1.3416 +0.0199 
Kendall Tau 0.3181 0.2593 ¡0.0588 0.3072 − 0.0110 0.3135 − 0.0046 
Pearson’s r 0.5285 0.4293 ¡0.0992 0.5006 − 0.0279 0.5199 − 0.0086 
R2 0.2662 0.1680 ¡0.0982 0.2318 − 0.0344 0.2434 − 0.0228  

Table 2 
For a hypergraph model, performance and feature importance results for the regression task. Model performance is based in terms of root mean squared and cor
relations between model’s estimates and empirical AoA norms. The largest absolute difference for each measure is highlighted in bold. Relative to the original model, 
reshuffling node degree degrades performance the most compared to frequency and length.  

Measure Original Performance Degree Shuffled Logarithmic Frequency Shuffled Word Length Shuffled 

Value Difference Value Difference Value Difference 

Root Mean Squared Error 1.2440 1.4014 þ0.1574 1.2742 +0.0302 1.2521 +0.0081 
Kendall Tau 0.3832 0.2671 ¡0.1161 0.3557 − 0.0275 0.3671 − 0.0161 
Pearson’s r 0.6057 0.4467 ¡0.1590 0.5729 − 0.0328 0.5878 − 0.0179 
R2 0.3521 0.1676 ¡0.1845 0.3171 − 0.0350 0.3354 − 0.0167  

Table 3 
For a pairwise network model, performance and feature importance results for 
the regression task. Model performance is based in terms of root mean squared 
and correlations between model’s estimates and the empirical AoA ranking. The 
largest absolute difference for each measure is highlighted in bold. Relative to 
the original model, reshuffling closeness degrades performance the most 
compared to degree.  

Measure Original 
Performance 

Degree Shuffled Closeness Centrality 
Shuffled 

Value Difference Value Difference 

Root Mean 
Squared 
Error 

129.86 143.62 +13.76 187.33 þ57.47 

Kendall Tau 0.4254 0.3513 − 0.0741 0.0992 ¡0.3262 
Pearson’s r 0.5904 0.4990 − 0.0914 0.1475 ¡0.4429 
R2 0.1807 − 0.0020 − 0.1827 − 0.7049 ¡0.8856 
NDCG 0.9589 0.9507 − 0.0082 0.9010 ¡0.0579  

Table 4 
For a hypergraph model, performance and feature importance results for the 
regression task. Model performance is based in terms of root mean squared and 
correlations between model’s estimates and the empirical AoA ranking. The 
largest absolute difference for each measure is highlighted in bold.  

Measure Original 
Performance 

Degree Shuffled s-Closeness 
Centrality Shuffled 

Value Difference Value Difference 

Root Mean 
Squared 
Error 

82.96 81.03 − 1.93 85.78 þ2.82 

Kendall Tau 0.6969 0.7012 þ0.0043 0.6987 +0.0018 
Pearson’s r 0.8328 0.8405 +0.0077 0.8212 ¡0.0116 
R2 0.6656 0.6710 +0.0054 0.6425 ¡0.0231 
NDCG 0.9824 0.9890 þ0.0066 0.9864 +0.0040  
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in performance. This is likely due to many features being used and so 
there is redundancy in the model for loss of data and therefore a change 
in one column does not affect the model’s prediction ability. Nonethe
less, the closeness centrality shuffling appears to give the largest 
reduction in prediction quality. A similarly prominent relevance for 
closeness in predicting normative learning was found in previous work 
(Stella, 2019; Stella et al., 2017). 

4. Discussion 

Our results quantitatively highlight a benefit of the hypergraph 
model over the pairwise network model in identifying patterns of early 
language learning from free association data. Even through the sole use 
of degree on the hypergraph, the regression model was able to predict 
AoA better than on the pairwise graph, with a 6% lower error rate. 
However, the model overall did not make accurate predictions for AoA. 
This is likely due to the lack of ability to calculate closeness centrality, as 
degree is not enough on its own to accurately predict the values. 
Nonetheless, the results are promising and work as a proof of concept of 
the use of the hypergraph in this setting. Additionally, the ranking task 
provided further evidence for the benefit of hypergraphs with its per
formance, predicting over two times as many results in the range of 50 
ranks of the correct value and providing a lower error rate of 36%. 
Hence, it seems that the hypergraph is able to capture more information 
about the structure of conceptual similarities in regard to age of acqui
sition. This research provides promise for the future use of hypergraphs 
in this setting. 

Given that the hypergraph has been shown to be a better model than 
the pairwise network model, at least within the context of word acqui
sition, what is the implication of such a result for human learning and 
the nature of mental representations? 

First, consider that the computational resources required to construct 
and analyse hypergraph models were very high, which forced us to limit 
the number of word associations that could be utilised in the hyper
graph. In the context of human memory, we may also expect that the 
representation of multiple, higher-order clusters of simultaneously 
interacting and co-activated concepts in memory is also cognitively 
quite expensive relative to the simpler pairwise memory representation 
of concepts. 

Does it make sense for a cognitive system to be investing high levels 
of cognitive resources in order to construct and maintain such a complex 
memory representation of concepts? Below we consider the extant 
literature on the development of children’s semantic representations 
and offer a tentative explanation for the superiority of hypergraphs, and 
why it is plausible for human memory to have a hypergraph organisation 
despite its complexity. 

The development of categorization is an important component of 
human cognition. Specifically, categorization refers to the ability to 
classify entities as members of the same category despite differences 
among those entities. For instance, understanding that “cat” and “dog” 
are examples of the “animal” category. Although developmental psy
chologists debate on the specific ways that children develop this ability, 
it is generally accepted that a crucial starting point is that children have 
the prerequisite perceptual and attentional mechanisms that enables 
them to extract multiple correspondences among features shared by 
category members (Goldstone, 1994; Sloutsky, 2003; Sloutsky & Fisher, 
2004). In particular, basic level categories (e.g., animals, birds, food) 
have correlated features (e.g., most birds can fly, all birds have feathers 
and wings) that a human learner must be able to uncover and consoli
date over the course of development (Sloutsky, 2003). 

From the perspective of a hypergraph representation of the lexicon, it 
is plausible to reimagine the development of hyperedges among sets of 
concepts as a by-product of the extraction of higher-order regularities in 
the learner’s environments (e.g., robin, pigeon, feather, wing, etc. could 
be concepts that are connected by a hyperedge in the hypergraph). 

When considering the overall trajectory of the development of a 

child’s semantic knowledge, research in the developmental sciences 
generally indicates that the development of associative relations be
tween concepts (e.g., spoon-soup) occurs earlier than taxonomic re
lations (e.g., pasta-rice; Unger & Fisher, 2021; Sloutsky et al., 2017). 
Associative relations can be readily acquired through exposure to direct 
co-occurrences of concepts and words in the language environment (e. 
g., cup-water), whereas the acquisition of taxonomic relations bootstrap 
the shared co-occurrence of concepts (e.g., cup-water and cup-juice 
leads to the taxonomic relation between water-juice as types of liquids 
that can be found in a sip cup; Sloutsky et al., 2017). 

The acquisition of taxonomic relations appears to be more gradual 
than associative relations among children (Unger et al., 2020). If we 
consider the acquisition of these relations within the context of a 
network model, it is clear that while pairwise associations among two 
concepts may characterise a very early lexicon, the nature of semantic 
knowledge organisation demands more sophisticated representations of 
higher order semantic relationships among concepts. 

The observation that the hypergraph model was a better predictor of 
age of acquisition norms than the pairwise network model suggests that 
the ability to specify hyperedges that connect sets of related concepts 
that are larger than two may be especially important in quantifying the 
acquisition of higher order semantic relations (with taxonomic relations 
as one example) in the developing mental lexicon. 

Given the above, we ultimately suggest that hypergraphs depict 
cognitive “compartmentalizations” that are lingering vestiges of 
learning in early childhood and perhaps more generally of human 
learning. This suggestion could also explain why the hypergraph model 
may approximate human memory better and show better prediction of 
age of acquisition data as compared to the pairwise network. Further
more, there is not necessarily an additional computational/cognitive 
cost to constructing these higher-order representations; rather, such 
representations emerge naturally as natural sets of concepts that are 
learned early on in life and continue to remain “grouped” or linked 
together into adulthood. 

To sum up, our findings provide quantitative evidence that hyper
graphs are models of relevance for investigating cognitive phenomena. 
Although past approaches in computational psychology introduced 
concepts similar to hyperlinks, e.g. synsets as collections of related 
synonyms in WordNet (Miller, 1995), the psychological literature has 
mostly re-cast such structures into pairwise networks, i.e. see the pair
wise network investigation by Sigman and Cecchi (2002). Hypergraphs 
as networks of hyperlinks have been discussed in recent works (Hills & 
Kenett, 2022) but their potential in quantitative, comparative investi
gation has yet to be explored. We believe our approach provides rather 
encouraging evidence for the power and usefulness of hypergraphs as a 
novel idea in data-powered psychological models. 

4.1. Limitations and Future directions 

On a final note, it is important for us to clarify the limitations of our 
modelling approach and highlight how improvements can be made in 
the future. Firstly, the free association data used here was gathered from 
adults but used to predict early language learning in children. This 
choice was motivated by other past approaches showing that even free 
association data produced by adults provide significant insights in pre
dicting the variance observed in AoA norms for children (see Hills et al., 
2009; Stella et al., 2017; Steyvers and Tenenbaum 2005). Within the 
ever growing Small World of Words project (De Deyne et al., 2019) it 
would be interesting to see if free association data provided by children 
(when available in the future) can lead to better results through the 
framework outlined here. Secondly, not all the data was used in con
structing the graphs. Due to computational limitations, the SWoW 
dataset had to be reduced significantly so that calculations could be 
made in a suitable time frame. Despite using a limited subset of the data, 
the results were still conclusive of the relative superiority of the 
hypergraph over the pairwise network. 
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In modelling terms, our adopted hypergraph model considered hy
perlinks of varying size between 2 and 4 but it represents only one 
among a wide category of hypergraph models, e.g. directed hypergraphs 
(where hyperlinks have an inner directionality), k-uniform hypergraphs 
(where all hyperlinks include k nodes) and many others (see Battiston 
et al., 2021). Despite the sheer number of different models, in our 
exploratory study we had to select a single model and were guided by 
the cognitive interpretation of free associations as serial recall tasks of 
clusters of concepts relative to a given cue. Future investigations might 
delve more into assessing the impact of considering or excluding the cue 
from hyperlinks. However, excluding cues would void comparison with 
pairwise network models, where cues engage in links with responses. We 
consider this an exciting research opportunity for network scientists 
interested in cognitive science and psychology. 

Another limitation of this study is its focus on normative learning, i.e. 
how most children learn words over time. Given the promising results 
obtained here by cognitive hypergraphs, future investigations should 
test whether these cognitive models are more predictive than pairwise 
networks even when considering how individual children learn words 
over time (see the approach of Beckage & Colunga, 2019). These in
vestigations of individual lexical learning would require more fine 
grained association data, which might come from initiatives similar to 
the recent MySWOW proof-of-concept project (Wulff et al., 2022), which 
gathered free associations for 8 individuals. Other types of network data 
might be plugged into the model, e.g. sharing semantic features might 
better capture the hierarchical nature of semantic memory, influencing 
model performance. The main difficulty of performing such steps would 
be about how to interpret hyperlinks: In free association data, one hy
perlink maps all the outcomes of a single mental search process, i.e. a 
cue and all its responses, and this leads to a clearer interpretation of the 
hypergraph building process. 

In the future, we expect to see advances also in the algorithms used to 
construct and analyse hypergraphs, which currently require consider
able computational costs. Furthermore, access to powerful computing 
infrastructure will enable larger hypergraphs to be built. With the use of 
supercomputers, the potential for vast amounts of data gathered from 
hypergraph structures may be possible in future work. When combined 
with the fast growing numbers of rich datasets of linguistic and behav
ioural norms, we anticipate that the hypergraph modelling approach 
will enable cognitive scientists to build network representations that 
better reflect the sophistication and complexity of the human lexicon. 
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