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Abstract The community structure is one of the
most studied features of the Online Social Net-
works (OSNs). Community detection guarantees sev-
eral advantages for both centralized and decentral-
ized social networks. Decentralized Online Social
Networks (DOSNs) have been proposed to provide
more control over private data. Several challenges
in DOSNs can be faced by exploiting communities.
The detection of communities and the management
of their evolution represents a hard process, espe-
cially in highly dynamic environments, where churn
is a real problem. In this paper, we focus our atten-
tion on the analysis of dynamic community detection
in DOSNs by studying a real Facebook dataset. We
evaluate two different dynamic community discovery
classes to understand which of them can be applied
to a distributed environment. Results prove that the
social graph has high instability and distributed solu-
tions to manage the dynamism are needed and show
that a Temporal Trade-off class is the most promising
one.
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1 Introduction

Static features, such as clustering coefficient or cen-
trality of Online Social Networks (OSNs) have been
largely studied. In particular, the community struc-
ture is one of the most studied feature of the OSNs
and it has attracted wide attention. The general notion
of community refers to the fact that nodes tend to
form clusters which are more densely interconnected
through social relationships, relatively to the rest of
the network. Communities reflect the behaviour of
users and a high percentage of shared contents are
generated by communities (or groups) of social users.
During the last ten years, the increase of the amount
of social data produced by social users, has put users
inside several privacy issues. Centralized solutions for
OSNs have been considered the main weak point in
the problem of guarantee a certain level of privacy. To
overcome this issue, decentralized solutions, known as
Decentralized Online Social Networks (DOSNSs), have
been proposed. The decentralization includes several
benefits, in particular in terms of privacy preserv-
ing, but it introduces new challenges that have to be
faced. In particular, the problem of data availability
is one of the most important ones. Current propos-
als manage the problem of data availability through a
user-centric point of view, and no approaches take into
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account groups (or communities) of users. However,
communities are useful to face other issues concerned
DOSNS, such as information diffusion and privacy.

Several studies are proposed to manage the com-
munity detection in dynamic environments, such as
Mobile Networks or Opportunistic Networks. How-
ever these studies manage scenarios in which mobile
devices make contact with each other and they con-
sider a community as a group of connected nodes.

By considering the importance of community
detection and the high level of dynamism in DOSNS,
this work propose a study concerns the need of com-
munity discovery algorithms in DOSNs. Our analysis
have been conducted by exploiting a real dataset,
gathered from Facebook. We analyse two different
community detection approach and we analyse the
pros and cons of them when applied in a distributed
environment. The final goal of our work is to show
how centralized community detection differs from the
reality and which kind of approach we have to use to
develop a distributed community detection algorithm.
To understand how centralized analysis differs from a
distributed one, we define a set of community change
events that permit us to understand the dynamic of
the social network. We study dynamic communities
from a user-centric point of view, by exploiting the
ego network model, to evaluate how frequent the com-
munities change over time and which events are more
frequent. All our studies show the need of a distributed
approach to manage the problem of the high instabil-
ity of the social graph over time when we consider
the online presence of users, and we show that among
the three main classes proposed for Dynamic Commu-
nity Detection [26], the Temporal Trade-off approach
seems to be the most promising one. This work is an
extended version of [17]. In the original work the
main idea was to study the communities in a dynamic
fashion and evaluate the possibility and the method
to use dynamic communities to address a specific
problem of DOSNS: the one of data availability. With
respect to the original work, in this work we generalize
and extend the possibility to use dynamic communities
as support tool also for other interesting and challeng-
ing problems of DOSNSs: information diffusion and
privacy in primis, but also to the other problems. We
put more emphasis also in the feasibility of adopting a
specific dynamic community detection method and we
show that some methods cannot be borrowed from lit-
erature because of the information they use to perform
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the task. We extended this work with a study involv-
ing a new community detection algorithm with a logic
that is completely different from the one used in the
original work. This is meant to show that the com-
munity detection problem can be understood in many
different ways, thus leading to different and often non
compatible results. We performed the same set of anal-
yses with the second algorithm and compared them
with the results obtained in the previous work. Then,
we also extended the sets of analyses with a study in
terms of similarity between communities detected by
the two approaches.

In this contribution we pose ourselves two research
questions:

1. is it really necessary to consider dynamic
approaches when we study problems in context
where churn is a real thing? Studying networks
statically is much easier because they do not
change over time, so the study can be carried out
only once. Switching to a dynamic study adds
some problems, one of which is addressed by the
second research question.

2. Among all the techniques to study dynamic com-
munities, is there any technique that fits better the
classical scenario of the DOSNs?

As we will see in the following sections of this paper,
node churn is critical in DOSNS, thus requiring us to
study these networks in a dynamic fashion. Moreover,
we will also show that not all dynamic community
detection algorithms fit the scenario of DOSNs, mak-
ing a class of approaches more suitable for the aim
with respect to others.

The important contribution of this work is that,
even we consider a specific scenario, such as a
DOSNSs, our contribution could be applied to other
distributed systems (i.e. wireless sensor networks), by
taking into account the specific constraints.

This paper is organized as follow. In Section 2 we
describe the related work. In Section 3 we introduce
the dynamic community analysis in DOSNs. A pre-
liminary analysis is showed in Section 6. Section 4
introduce our DOSN scenario and how dynamic
community detection is important to manage main
DOSNSs’ issues. Section 5 show our study by focus-
ing on two of the three dynamic community detection
approaches. In Section 6 we introduce our results
obtained by analysing a real dataset. Finally, conclu-
sions and future work are presented in Section 7.
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2 Related Work

In this section we describe the two fields involved in
our work. First of all, we introduce current DOSN
proposals by describing their characteristics. After-
wards, we introduce the state of the art in the dynamic
community detection field.

2.1 DOSN’s Approaches

DOSNSs [9] have been proposed, mainly, in order to
overcome the privacy issues of the centralized OSN.
The decentralization of most of the current proposals
is usually implemented by a P2P network.

Diaspora,1 with about 669,000 users, is one of the
most successful DOSN proposal currently active and
deployed in a decentralized way. A user joining the
service must register himself to a so-called pod. Pods
can be seen as servers containing the information of
the users registered to them, and can communicate
with each other thus forming a network. Diaspora also
introduces the aspects as a mechanism to share infor-
mation with specific subsets of one’s contacts. Each
user can define his own aspects which are sets of his
friends on the DOSN. A content shared with an aspect
will not be seen by users outside it. This mechanisms
allow the users to have a high level of privacy both
inside, with respect to other users, and outside, with
respect to third parties, the DOSN.

PeerSoN [2] is one of the most well-known DOSN
after Diaspora. It is implemented as a logical two-tier
system. The first tier is used for the lookup service,
while the second tier is used as a communication
layer between users of the DOSN. The look-up service
stores both the meta-data required to find users (IP
address) and the data they store (profile information,
contents, etc...). In the original work, authors used a
Distributed Hash Table (DHT) to implement this layer.
A peer, to connect to another peer, gathers the needed
information from the look-up service, then directly
connects to it.

SafeBook [8] is made of two layers: a P2P over-
lay implementing lookup services, and a user-centric
social overlay implementing the main functionalities
of the social network. The social overlay is composed
by a set of structures named Matryoshkas, which
are concentric rings of peers built around each user.

Thttps://joindiaspora.com/

Matryoshkas are connected through radial paths from
the outer one, through inner ones, up to the core node.
These paths are built over the social network itself by
using trusted relationships. The social overlay guar-
antees a trusted data storage, profile retrieval, and an
obscure communication through indirection.

LifeSocial [13] is a plugin-based social network.
This philosophy makes it highly modular and easily
extensible. Data within the service is stored by using
a DHT and cryptography. In particular both symmet-
ric and asymmetric techniques are used to provide a
high level of privacy. Also messaging between users is
handled through the overlay given by the DHT.

A similar approach is Cachet [23], which replicates
profiles on the DHT to guarantee the data availability.
Read-policies are used to increase the privacy of users
by controlling who can read each user’s data, while
write-policies protects the system from malicious data
overwrites. Access policies, both read and write, are
enforced by the extensive usage of cryptographic tech-
niques. One original contribution by this work is a
social caching algorithm. Furthermore, a gossip-based
algorithm is proposed to let peers exchange cached,
unencrypted social data.

DiDuSoNet [16], similarly to others, is made of
two layers: a lookup overlay and a social overlay. The
lookup overlay is implemented with a DHT, instead
the social overlay is a Dunbar-based social over-
lay where connections between nodes correspond to
social relations between users in the Dunbar-based ego
network and it is used to manage the main social ser-
vices provided by the system. For instance, to address
the problem of data availability, the concept of Point
of Storage (PoS) is introduced as a particular instance
of a replica-based technique. The number of replicas
of each profile is minimized by considering only two
replicas.

2.2 Dynamic Community Detection

Community Discovery is a relatively novel, yet
intriguing, task in complex network analysis [1, 3].
There is no a formal definition of the task that is
widely accepted, but, intuitively, its goal is to identify
clusters of highly connected nodes. A first definition
of community is given by [6], where a community is
defined as a set of entities that share some closely cor-
related sets of actions with the other entities of the
community.
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Up to now, most of the research in this field focused
on static networks, modeled by static graphs that do
not change over time. Unfortunately, this simplifica-
tion does not describe well real-world scenarios and
the dynamic nature of most complex networks. As for
the static case, it is hard to formally define what a
dynamic community is. A very abstract definition is
proposed in [26], which does not make any assump-
tion on the communities to be found and the method
to find them.

Up to date, the two most practical models used
to represent dynamic networks are the Temporal Net-
works and the Network Snapshots.

Temporal Networks model is the most com-
plex method which provides all possible temporal
details. In this approach the information is decom-
posed into elementary bricks: series of temporally
ordered, timestamped, relations. This representation
of the network, which is the closest to the real-world
scenario, allow a very fine-grained representation of
the dynamics.

The idea behind the Network Snapshots model is
to aggregate data over a discretization of time. Rather
than storing every single perturbation of the network,
the network is observed at, possibly periodic, instant
of times and its state is recorded. This gives us an
ordered set of networks, each representing the state of
the network as observed at a particular instant of time.
Even if this model is less expressive than the previous
one, it is also easier to use it as each snapshot can be
considered as a standalone network.

2.2.1 Dynamic Community Detection approaches

Dynamic Community Detection Algorithms can be
divided into three main classes [26]: Instant-optimal
Community Detection, Temporal Trade-off Commu-
nity Detection, and Cross-Time Community Detection.
Each of these three classes corresponds to a differ-
ent definition of Dynamic community with respect of
which information is used to determine communities
at a given time instant ¢.

In the Instant-optimal Community Detection
class, communities existing at time ¢ only depend
on the state of the network at time 7. No past or
future, with respect to time ¢, information is used in
discovering communities at time 7. The network evo-
lution is seen as a series of successive steps, which
makes the Network Snapshot a more natural model
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to work with. In the second class, Temporal Trade-
off Community Detection, communities defined at a
time instant ¢ depend on the actual state of the net-
work and the past information, possibly up to the
initial known state. Typically this is done by an iter-
ative procedure which consist of an initial bootstrap
and successive updates. During the bootstrap commu-
nities are found in the initial state of the network,
while during the successive updates communities are
updated using the current state of the network, current
communities and other past information. Finally, we
find in the Cross-Time Community Detection class
all the methods that use all available information, i.e.
past, current and future, to identify communities at
instant 7.

Dynamic communities show a life-cycle during
their evolution. In detail, several studies [3, 24, 30]
have analyzed the dynamic behaviour of social com-
munities, and a list of events are proposed:

—  Birth: this event is identified when a new commu-
nity appears for the first time;

— Death: a community is vanished: all nodes
belonging to the vanished community lose this
membership;

—  Growth: a community increases its size due to the
adding of one or more nodes (or relations) to the
social graph;

— Contraction: some nodes are rejected by a com-
munity thus reducing its size;

—  Merge: two or more existing communities merge
into a single one due to changes to the social
graph;

—  Split: a community, as consequence of node/edge
vanishing, splits into two or more components;

—  Continue: a community remains unchanged;

— Resurgence: a community vanishes for a period,
then comes back without perturbations as if it has
never stopped existing. This event can be seen as
a fake death-birth pair involving the same node
set over a lagged time period (example: seasonal
behaviors).

Figure 1 shows a graphical representation of the
above events. This toy example captures the eight
events that regulates dynamic community life. In the
first row Birth and Death; in the second row Growth
and Contraction; in the third row Merge and Split; in
the fourth row Continue; in the last row Resurgence.
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Birth

Death

Growth

Contraction

;

Fig. 1 Graphical representation of Community events

3 Dynamic Community Analysis in Complex
Dynamic Networks

Dynamic Community Discovery is an interesting
novel task in the area of Complex Networks. There
are several techniques to address it, each showing
peculiar strengths and weaknesses. Up to now, all the
studies concerning Dynamic Community Discovery

Merge Split
Continue
Resurgence
t e < > -t 0 o t+n

focus on the a posteriori study of the evolution
of the community structure through time and they
are executed in a centralized way (low end enti-
ties can gather data which is transfered to power-
ful clusters where the actual computation is made).
Clearly, Dynamic Community Discovery is very
important and it can be used to better understand
how networks evolve through time. However, the
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analyses are run only when all the data is col-
lected, and there is no waste of computing power
because all data is available when the computation
starts.

However, distributed systems, such as P2P net-
works or IoT, require some constraints that were not
needed in centralized systems, or in the a posteriori
analysis. In detail, problems rise when the commu-
nity structure itself, or a derivative analysis result, is
needed on the fly as the system lives and changes. In
this cases, a posteriori analyses are not useful tools
because, for instance, results are too old to be used
when they are ready. Moreover, there exist distributed
systems which needs to change their behaviour on the
fly in respect of the results of the analysis. One of
the main constraint in these systems concerns the high
dynamism of the network they model.

Several approaches proposed to manage the prob-
lem of community detection in social networks take
into account the evolution of the social graph in term
of friendship relationships (or co-authorships [29,
31]), or in term of interactions between users (or call
graphs [14]).

Focusing on a single user, its friendship relation-
ships do not change so frequently. Instead, interactions
of each nature (calls, emails, posts, tweets, etc...) suf-
fer of a different level of dynamism. However, the
study of the interactions graph represents a different
evaluation of the social graph, because the interac-
tion graph is an abstraction of the social graph that
should be represented as a weighted and usually
directed graph [15]. In a distributed system, such as
a DOSN, an interesting evaluation concerns the study
of dynamic community by considering the temporal
behaviour of users. As showed in our previous work
[28], the static view of an ego network and, as a con-
sequence, its communities are completely different
when we consider the time-varying ego network.

The aim of this paper is to show that there is a huge
difference in the results when the analyses must be
performed on the fly with respect to the a posteriori
ones. In detail, we will take the DOSNSs as case study
and perform some investigations.

In the follow, we describe more in detail our
DOSN’s architecture by explaining how our architec-
ture is organized. Moreover, we explain the problems
of DOSNs, with a special focus on privacy, infor-
mation diffusion, and data availability. Finally, we
give our definition of the events occurred during the
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normal activity of a DOSN which involve the dynamic
communities.

4 DOSN: Our Scenario

A current trend of DOSNs is the usage of a social over-
lay [16], which represents in some way the friendship
relationships between users, to implement the needed
services. The network topology resulting is generally
known as a Friend to Friend network (F2F) in which
users only make direct connections with people they
know, i.e. their friends on the DOSN. Usually, the
social graph of each user is referred by using a well-
known social network model known as Ego Network
[21]. The Ego Network is a structure built around the
ego which represents the user’s knowledge of the net-
work. In fact, the Ego Network of a user is made of his
direct friends, known as alters, and the existing ego-
alter and alter-alter relations (Fig. 2). Formally, each
vertex u € V can be seen as an ego and EN(u) =
(Vu, Ey) is the ego network of u where V,, = {u} U
{veVliu,v) € E}, E, = {(a,b) € El{a,b} C V,}
and E is the set of edges present in the original graph.
N(u) =V, — {u} is the set of adjacent nodes of u.

In a DOSN, the Ego Network model reflects the
local and limited knowledge that each user has about
the whole network. A F2F network can be formally
represented by using an Ego Network to model the
social graph and we assume a one-to-one mapping
between the users of the OSN and the nodes of the
DOSN [16].

Fig. 2 This image shows an example of an Ego Network.
The ego, the red node, is connected to all its alters, the blue
nodes. Also the relations between alters are included in the Ego
Network
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4.1 Problems in DOSNs

Decentralization brings major benefits mostly to users
in terms of privacy, but also introduces new interest-
ing challenges and problems to be addressed by the
developers. We now briefly discuss this problems:

— Dynamism. In a DOSN there are two types
of dynamism: a social and an infrastructure
dynamism. The social dynamism concerns social
relationships which can change due to the varia-
tion of relations between users, i.e. users forming
new relations or breaking existing ones, and of
the total number of users registered on the DOSN.
This kind of dynamism is present also in cen-
tralized OSNs, but in DOSNs it has a major
impact on the service delivered because it affects
the structure of the social overlay. The infras-
tructure dynamism is related to the underlying
overlay network. Users arbitrarily decide when
they go online or offline in the system, accord-
ingly nodes in the underlying network represent-
ing users may appear or disappear. In different
time instants, the available connections of the
overlay may change in term of active links and
nodes. Now, even though both types of dynamism
are present in DOSNs, social dynamism is less
dangerous because it is a quite rarer effect. More-
over, in this case, it is more common to create new
links rather than destroying existent ones [20].
This high level of dynamism must thoughtfully be
taken into account when developing the service
and, most of the times, very specific algorithms
are needed.

— Data availability/persistence. Without a central
entity providing data, proper storing methods
must be designed to let it always be available.
Data availability is a real hard problem for every
distributed environment. One of the main used
technique is the replication [32]. Several proposed
solutions have exploited the social overlay to store
data among nodes in the networks. A current
trend is to use trustworthiness to choose replica
nodes because of the need of a high level of pri-
vacy inside the system, such as in My3 [22]. In
[11, 16] a friendship-based replication schema is
proposed. A friendship-based replication schema

chooses replica nodes by taking into account the
friendship relationships between users. Indeed,
consider an ego node e, only its friend nodes can
be chosen to be its replica nodes.

Scalability. Scalability is a crucial property of
large scale systems. Simply mapping a social
graph onto a distributed network can be very
expensive due to the number of social links for
each node, so the cost of mirroring the social net-
work links into distributed network links can be
high. It can also be very inefficient. As discussed
previously, most of the social links are inactive
(i.e. two friends who rarely interact online).
Topology. Nodes should be connected accord-
ing to their social connections in order to cluster
friends in the overlay network. This should facil-
itate operations as information diffusion or data
storage. As a downside, this would limit the avail-
ability and robustness of data access if a user has
only few online friends.

Information diffusion. This issue is related to how
to deal with updates, i.e. new content generated
by users. A key feature for a successful DOSN
is the one of making the service the closest pos-
sible to a real-time service to supply the freshest
possible informations to the users. For this rea-
son it is very important to design an effective
mechanism that implements Information diffu-
sion. In centralized OSNs, the spread of new
content to other users is granted for free in such
system thanks to the uniqueness of this repository
because all users can only receive informations
through it. In decentralized systems, users have
a limited knowledge of the network and commu-
nication between users’ devices happen on the
overlay. In DOSNs based on a Social Overlay,
users can directly communicate each other if there
is a social link connecting them [5], and, since
data can only travel through social links, there
is the need of specific information dissemination
strategies to spread information over the DOSN.
Privacy. While having an increased level of pri-
vacy was the main motivation to move to a decen-
tralized implementation of the service, maintain-
ing an overall high level of privacy is a com-
plex problem for DOSNSs. In the centralized ver-
sion, privacy was granted by the service provider,
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as long as its servers are secure from attacks.
The major downside is the fact that the service
provider itself could maliciously violate the users’
privacy by exploiting their data, for instance by
selling them to third parts. In distributed services
this is no more possible because, in principle,
each user decides who can access their data. Cur-
rent DOSNs typically make use of encryption,
both symmetric and asymmetric, to preserve the
privacy of a user with respect to other users.

In this paper, we focus our attention on the usage
of community discovery to manage three of the main
problems of DOSNs: Data availability, Information
diffusion and Privacy.

4.2 Dynamic Community Analysis to Manage DOSN
Issues

Community structure is of great interest in the study
of complex networks. In addition to the interest by
the algorithmic point of view, it is also interesting
because it can uncover hidden properties if properly
carried out. A relatively novel usage of community
structure is the one to improve systems that can be
modeled through a network by actively exploiting it
in the implementation of the system. The usage of
community in DOSNs represents a promising and
uncovered solution. As discussed in Section 3, DOSNs
suffer of a high level of dynamism and for this rea-
son, we are interested in studying how communities
evolve during the online activity of the system due to
the online/offline of users to understand which events
could happen and the frequency of them. Communi-
ties in DOSNs can be applied to manage the problem
of data availability by implementing a new content-
based replication technique to address data availabil-
ity. For sake of clarity, a content based point of view
concerns the problem of finding groups of users which
are interested into the same content to minimize the
number of replicas [17]. The presence of densely con-
nected groups of nodes can be exploited to increase the
level of data availability and to minimize the replicas.
A possible approach could be to exploit the commu-
nity structure to store at least one replica of the whole
profile or of interest content for the users belong-
ing to the community [17]. Furthermore, community
structure can be exploited to manage the information
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diffusion issue by discovering groups of users which
share the same interested and guide the information
among the discovered communities. Finally, in terms
of privacy, community structure can be exploited to
study problem of privacy, and to guarantee a high level
of privacy.

Some studies about community detection in
dynamic P2P networks have been presented. Many
of these approaches are basically just a distributed
version of the Label propagation [25] approach. For
instance, in [4] authors propose a revised label prop-
agation divided in five phases, each of which has a
different rule to update the labels of nodes. A simpler
approach is presented in [18], where the rule to update
the labels of the nodes is based on a similarity met-
ric. Moreover, in [19], authors propose a distributed
approach for local dynamic community detection and
three implementation variants. In this case, the dis-
tributed nature of the algorithm induces a very weak
consistency among the nodes of the network. Contrary
to the presented works, the distributed approach we
consider is missing in literature should be a pure Tem-
poral Trade-off approach, which can be implemented
by exploiting a P2P networks, and by exploiting a
super-peer approach, when super-peer nodes can build
and manage the evolution of communities.

4.2.1 How Community Change Events Affect DOSNs

In this study we refer to the events proposed in [29]
and we do not consider the event survive, usually
referred as growth and shrink, due to the fact that this
event gives little information about the evolution of the
communities in the network.

Considering the problems concerned DOSNs and,
in detail the proposed community-based replication
technique explained in Section 4.2, the events birth,
death, split and merge can affect the level of data
availability. Moreover, these events can affect the dif-
fusion of the information. Birth events are critical,
especially with respect to the data availability, and
they are one of the main issue that has to be faced.
Indeed, a newly formed community may have no
information about the most fresh contents created by
the ego and nodes inside such communities and it
must find a way to retrieve the information. Death
events, reported to give us more information about
node churn in such dynamic context, are no concern
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in a replication technique because offline nodes do not
need any content. Instead, they have a huge impact in
the information diffusion problem: when a community
disappears a community-based routing technique must
adapt accordingly. Finally, Merge and split events are
important because, in the former case, nodes that
belong to different communities converge in the same
community, so they should merge the available infor-
mation, both social and routing, and probably a few
replicas of data can be dropped. In the latter case,
splitted communities suggest that communities may
become more distant over time, so the content may
need to be redistributed and replicated over the newly
formed communities.

5 Our Dynamic Community Study

A real interest in studying the dynamic community in
distributed environments is to understand how the net-
work changes and in particular, after defining what
we intend as community, how the community evolves
during the time.

As explained in Section 2.2.1, the current dynamic
community detection approaches are three: the
Instant-optimal Community Detection, the Tempo-
ral Trade-off Community Detection, and the Cross-
Time Community Detection. Each of them have some
peculiarities, both in the way communities are dis-
covered and the result itself. This fact, ultimately
pose the systems developers a big question: which is
the best dynamic community detection method con-
sidering our scenario? We already know that there
is no approach that is clearly and always better
than the others, but rather they show better results
according to their strengths. Before moving into the
study of the different Dynamic Community Discov-
ery approaches, we make some considerations on the
feasibility of the application of this methods in our
scenario. Both the Instant-optimal and the Temporal
Trade-off approaches are applicable because com-
munities are evaluated considering only the current
state of the network in the first case, and considering
also past information in the latter case. However, the
Cross-time Community Discovery approach can not
be useful in this kind of environment because, since
communities are used within the functioning of the
system, it must be possible to discover them while the

system lives. This fact makes the third approach unus-
able because it also requires all the future possible
information which is not available. For this reason, in
the following sections, we present the two approaches
we used to study the dynamic nature of communities.

In first place we present the instant-optimal study,
which is a common way to study dynamic communi-
ties due to the intuitive reasoning behind it. Then we
move to a temporal trade-off one, which is still quite
easy to understand, but very closer to a real-world
distributed application.

In the Instant-optimal study we analysed the com-
munity evolution at periodic time instants. In particu-
lar we extracted a Network Snapshots representation
of the network from our dataset, then we extracted
communities for each of this snapshots using a static
community discovery algorithm taken from literature.
This process yields a set of communities for each
of the snapshot. Finally, to evaluate the dynamism
of the community structure, we need to match
this communities using some metric. After choosing
such a metric from the literature, we redefined the
community events relevant to us, according to our
scenario.

Considering the fact that Community Discovery is
a complex task, we believe that re-evaluating commu-
nities from scratch whenever they are needed may be
a waste of time and computing power. Therefore in
the Temporal Trade-off study we analysed the network
with an approach in which communities are updated,
rather than computed from scratch, every time a new
entity joins the network. In this case, we only had
to choose an algorithm in the Temporal Trade-off
approach capable of handling these updates. There is,
in principle, no need to redefine the events describ-
ing a dynamic community life cycle, and therefore no
need to define a similarity metric to match commu-
nities found at different time slots. This is because
the Dynamic Community Discovery algorithm itself
is able to record whenever one of the main event
happens.

5.1 The Instant-Optimal Approach
Given its simplicity, the first technique to analyze
our dataset was an Instant-Optimal Community Dis-

covery technique. In our approach, also due to the
fact that our dataset is represented with a Temporal
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Networks model, we decided to periodically extract
communities and match them at a second time.

We use DEMON [7] to discover static community
for two main reason: a definition of community simi-
lar to the one adopted in this paper and the theoretical
linear, with respect to the number of nodes, time com-
plexity. In the follow, we describe more in detail how
DEMON works.

5.1.1 DEMON

DEMON, acronym for Democratic Estimation of the
Modular Organization of a Network, is a static com-
munity discovery algorithm that falls in the Model-
based approach. The novelty of the algorithm is the
fact that communities are discovered in a “demo-
cratic” fashion: each node of the network proposes a
set of communities based on its local view. Then these
local communities are merged together to build the
global communities.

The algorithm uses two useful concepts: the Ego
Network, the same we presented in Section 4, and the
Ego Minus Ego. The ego minus ego of a node u can
be obtained from its ego network by simply removing
node u itself and all its incident edges. The ego minus
ego of a user u is therefore the set of its alters with the
interactions between them.

The algorithm proceeds in two steps: firstly with
the extraction of local communities, lastly with the
merging of local communities up to the global com-
munities.

To extract local communities, the algorithm com-
putes the ego minus ego for each node and, on the
obtained smaller networks, it performs a community
discovery algorithm. To discover communities in the
ego minus ego network, the authors chose the Label
propagation algorithm [25]. In the Label propagation
algorithm, each node is given a label which repre-
sent a community membership. Labels are propagated
iteratively, until convergence is met. There is con-
vergence when nodes do not change labels after a
propagation. The steps of the algorithm are shown in
Algorithm 1. DEMON discovers local communities,
in the sense that these communities are the ones pro-
posed by each node, based only on the node’s view
of the network. These communities based on local
views, are then to be merged in order to build global
communities.
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Algorithm 1 Label propagation steps

1: Assign to each node in the network a different
label.

2: Sett = 1.

3: Shuffle the set of nodes V.

4: For each node v € V, update the label of v with
the most frequent label among its neighbours. Ties
are broken uniformly at random.

5. If labels did not change from last iteration, or ¢
reached a maximum established value, stop the
algorithm. Otherwise set t = ¢ + 1 and go to step
3.

5.1.2 The Application of the Algorithm

We represent an ego network through time e as a set
of n snapshots (EGY, EGS, ..., EG},). Each of this
snapshot represents the state of the ego network at the
corresponding instant of time, i.e. considering only
online nodes. At each snapshot of an ego network
e at time i, identified as E Gf, is associated a set
of communities C = (Cil, Ciz, Ci’”), which rep-
resents the community structure present at time i. In
this paper a community is identified with nodes that
are densely linked to each other, directly or through
other nodes. We are interested in evaluating the evolu-
tion of communities in term of the community change
events explained in detail in [29]. For sake of readi-
ness, communities events are merge, split, death, and
birth.

Communities are extracted at each time snap-
shot independently using DEMON, then communities
belonging to adjacent snapshots are matched accord-
ing to a similarity metric. To evaluate the similarity
between communities, we use a revised version of the
similarity metric proposed in [29]. In detail, consider
an ego network ¢ and two snapshot EG{ and EG¢, the
revised similarity metric is introduced by the (1),

V2 v
max(\V, 1,1V

sim(CP,, Cl) = (1)

where C? is the community g included in EGY{ and
C l.p_l is the community p included in EG{_,. Instead,
Vl[i | is the set of nodes contained in Cip_ | and Viq is
the set of nodes contained in Ciq.
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Thanks to this similarity metric, each community in
a time instant i is compared with each community of
the time instant i — 1.

Moreover, we need to redefine all the possible com-
munity change events (merge, split, death, birth) to be
applied in a DOSN according to the proposed simi-
larity metric. We propose our definition of the four
events:

—  Birth: we say that a community Cl.p is born at
time i if, given the set of communities C;i] =
{Cl,,C?,,---,Cr }attimei —1,VC] | €
Cr_,, we have that sim(C/",C{_|) = 0. This
means that all the communities discovered at the
previous time instant (i — 1) do not share any node
with C ip .

— Death: we say that a community Cf_] is dead
at time i if, given the set of communities C; =

{Cl,C? ...,CF} at time i, VC] € C¥, we have
that sim(C!_,, C{) = 0. This means that all the
communities discovered at time i do not share any
node with Cl.p_l.

—  Merge: we say that a set of communities C;" | =
{Ci]—l’ Ciz—l’ e
C/ if, for each community C;_, € C¥ |, we have
that sim(C[.j_l, Cip) > k, where k is the similarity
threshold defined in [29]. This means that k% of
mutual friends between C lp and each community
in C/_, are included in Cip .

—  Split: we say that a community C{:l splits into
a set of communities C} = {C/, c? ..., cry
if, for each community Cij € Ci* , we have that
sim(Cij, Cl.p 1) = k where k is the similarity

threshold as_described in [29]. This means that a
community C lp is divided in a set of community

identified by C"_,.

,C f_l} merge into a community

5.2 The Temporal Trade-Off Approach

The choice of the algorithm to use for this analy-
sis is very important, because we want to have a
view of the community structure which is the closest
possible to a real world case. Therefore, the chosen
algorithm should be light and quick in updating com-
munities. These two properties are highly desirable in
environments where entities have low computational
power or highly dynamic such as sensor networks

or mobile networks. Among the many present in lit-
erature, belonging the temporal trade-off class, we
chose TILES [27]. The choice was driven mainly by
the logic behind the algorithm, which can be roughly
summarized as: each time there is a perturbation on
the network, update communities locally with respect
to the perturbation. In the follow, we propose an
overview of the algorithm.

5.2.1 TILES: an Online Algorithm for Dynamic
Communities

TILES falls in the Temporal Trade-off CD because
communities existing at a certain moment in time ¢
depend on the current state of the network and the
existing communities up to time ¢. The authors sup-
pose the presence of an interaction streaming source.
Each time a new interaction is produced or expired,
the graph is modified and the memberships into com-
munities of the surroundings of the two endpoints of
the edge are reevaluated. Nodes inside a community
can have two different roles: core and peripheral. A
node involved in at least one triangle with other nodes
in the same community is a core node for that com-
munity. Instead peripheral nodes are neighbours of
core nodes but they are not core nodes themselves.
Clearly, the algorithm can output overlapping com-
munities as nothing forbids a node of being part of
two or more community cores. The algorithm out-
puts a chronologically ordered sequence of sets of
communities, each of which represents the partition
of the network at the end of each interval of dura-
tion 7. The pseudo code of the algorithm is shown in
Algorithm 2. A queue is used to store the edges so
that the expired ones are always the first ones to be

popped.

Algorithm 2 Tiles

Get new edge from source

Put the new edge in a priority queue

Remove expired edges and update communities
Add the new edge to the graph and update com-
munities

A

By considering the Algorithm 2, when an edge
(u, v) is added to the network we may have 4 distinct
cases:
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1. both u and v appear in the network for the first
time. In this case, no action is performed because
there is no new triangle;

2. one node is in a peripheral community and the
other appears for the first time or is in a periph-
eral community as well. Again, no action is per-
formed because nodes in peripheral communities
do not propagate community memberships unless
it exists a node w such that #, v and w form a
triangle. In this second case a new community
should be created,;

3. one node is a core node for a community and
the other appears for the first time. The appearing
node inherits the peripheral community member-
ship of the other node;

4. both u and v are core nodes for two different com-
munities. Here we have two different possibilities:

(a) u and v have no common neighbours, the
two nodes propagate each other the periph-
eral community membership;

(b) u and v have common neighbours, com-
munities memberships are reevaluated and,
possibly, changes are propagated.

When an edge (u, v) is removed from the network,
communities shared by u and v, the roles of # and v
and their neighborhood must be reevaluated. Two are
the scenarios that can happen:

1. The original community is still made of one com-
ponent, only reevaluate the roles at close range
with respect to the removed edge;

2. The original community splits into two or more
communities: each of the new communities is
considered as a new community and all the roles
are reevaluated.

In the reevaluation phase, the clustering coefficient of
each node within the specific community is computed
and the node remains core if the clustering coeffi-
cient is > 0, while they turn peripheral nodes if the
clustering coefficient is equal to 0.

5.2.2 The Application of the Algorithm

The algorithm returns a set of communities for each
of the requested observations. Thanks to the nature
of the algorithm, this communities do not need to
be successively matched using some metric as in the
Instant-optimal analysis. In fact the evolution of the
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communities, their events, is recorded as the algorithm
runs. This trait of the algorithm lifts us also from the
need of defining a similarity metric and the need of
giving new definitions of the community events, as
the events are automatically detected by the algorithm
itself.

5.3 Comparison Between the Two Approaches

We now briefly underline the positive and negative
traits of both of the presented approaches.

The first presented approach is the instant-optimal
approach, which is very intuitive and pretty straight-
forward. The only requirement to use this approach is
to choose a community discovery algorithm, to dis-
cover communities at each time instant, and to choose
a similarity metric, to match the identified communi-
ties. Both the problems, static community detection
and set similarity, are well studied problems, so in lit-
erature we can find a very large amount of already
implemented and tested approach to choose from.
Another important fact to consider is that each times-
lot can be processed independently. Thus, this means
that the discovery of communities can be naturally
made parallel. This is the same for the matching phase:
each matching can be performed on its own, when
the communities from both timeslots has been discov-
ered. Another good point of using this approach is that
communities are discovered from scratch at each time
slot. which prevents the phenomenon of drifting. This
phenomenon happens when communities at a time
instant ¢ are computed by updating the ones discov-
ered at earlier time instants to approximate the ones at
time ¢. Depending on how communities are updated,
it may happen that the updates lead to different com-
munities with respect to the ones present. Generally
speaking, in case we have a drifting effect, we observe
a huge number of tiny communities which are actually
fragments of the real community.

The instant-optimal analysis can be a really power-
ful data mining tool, but when it comes to distributed
environments it may be not the best choice, mainly
because it requires the exact knowledge of the status
of the network at a given time. This translates into hav-
ing synchronization, or strong consistency, which is
impossible in truly distributed environments (see FLP
theorem [12]). Another important fact is that commu-
nities discovered with the instant-optimal analysis do
not take into account time. Instead, in our Temporal
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Trade-off community detection technique, as we saw
in Section 5.2, communities at a given time instant
t are influenced by both current and past informa-
tion. Taking into account time may potentially lead to
some effects, such as avalanche effect, large commu-
nity drifting with respect to the static case and high
instability of the process. While this is true, it does
not mean that they are negative or undesirable effects.
It is up to the analyst to choose whether to give great
importance to time or not. Clearly, if we are inter-
ested in finding the optimal partition at a given time
instant, without giving any relevance to time, those are
all negative effects that have to be mitigated some-
how. Instead, if we give a special meaning to the
time at which entities or nodes join or leave the net-
work, then those are desirable effects. The drifting of
a community may translate into a finer grained def-
inition of community which is also based on time
information. In addition we cannot underestimate the
fact that in our Temporal Trade-off approach there is
no matching phase between communities belonging
to adjacent timeslots. In fact, trying to match com-
munities that are different each other can be a waste
of time, while matching two sets of highly overlap-
ping communities can lead to guessing the correct
matching. Temporal Trade-off eliminates these two
potentially dangerous problems by keeping track of
each community throughout time.

6 A Case Study: Facebook

To evaluate the dynamics in real OSNs, we retrieved
a real dataset, gathered by a Facebook application,
called SocialCircles!.?

In this section we present the dataset we used for
our experiments, and we also present SocialCircles!,?
the Facebook application that allowed us to retrieve all
the needed data for this analysis.

6.1 The Facebook Application SocialCircles!

SocialCircles! was a Facebook application that
showed to registered people interesting facts about
their Facebook ego network. The application was
deployed in 2014 and has gone under maintenance on

Zhttps://www.facebook.com/SocialCircles-244719909045196/
3https://www.facebook.com/SocialCircles-244719909045196/

the 1st of May 2015 due to the change of the Facebook
APIs which were substantially reduced in size.

As described in [10], SocialCircles! was able to
retrieve the following sets of information from regis-
tered users:

Topology and profile information For each regis-
tered users, we obtained its friends and the friend-
ship relationships existing between them or, in
other words, the ego network of the registered
users. We were also able to retrieve the profile
informations about the registered users.
Interactions By analyzing interactions, such as
posts, comments, likes, tags, and photos, between
users registered to the application and their friends,
we could estimate the strength of their interactions.
By aggregating all this informations, it is also possi-
ble to weight the links connecting each pair of users
and study the associated graph.

Online presence It was not trivial to collect tem-
poral information since the Facebook API did not
permit it directly, even while the application was
online. The online presence of users was approx-
imated by monitoring the chat status of registered
users in Facebook periodically. Each time the chat
was monitored, a user can be flagged with O if he
is offline, 1 if he is in the active state and 2 if he is
idle (online, but no action performed in the last few
minutes).

During its life, the application was able to build
two datasets: the first one containing more than 300
hundred ego networks and 15 days of temporal ses-
sion of users, instead the second one contains 240 ego
networks and 32 consecutive day of temporal infor-
mation. For our analysis we use the second one which
is also the most recent one. In details. our dataset
contains 240 users monitored and their complete ego
networks (for a total of 78.129 users). For each of the
registered users we were able to gather their profile
and ego network, and the interactions between them
and the alters. Moreover, we also obtained temporal
information about the total 78.129 users for 32 con-
secutive days, by sampling all the registered users and
their friends every 5 min, for 32 days (from the 9th
March to the 10th April 2015).

Since the time aspect is the cornerstone of our
research, we preliminary analyzed the temporal infor-
mation contained in our dataset. This preliminary
analysis is aimed to understand a general trend of
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online/offline behaviour of the users on a reference
OSN.

We start by recalling that, in our dataset, time
is modeled in a discrete way to represent the
online/offline status of the users. In particular, each
day of the monitored period consists of a finite num-
ber of time slots (i.e., 288 time slots each of 5 min), for
a total number of 9251 time slots in the whole moni-
tored period. This choice of the time granularity was
driven by the fact that the machine storing the data
was not always able to cope with finer granularities. In
fact, for smaller choice of granularities, it sometimes
happened that a new set of requests were issued while
the reply for old ones were not yet stored on the appli-
cation database. For the sake of our analysis, we do
not make any distinction if the user is in the active sta-
tus (status = 1) or in the idle status (status = 2). This
decision was taken because if a user is online, active
or idle, his device can still help the P2P network in
delivering the service. Thanks to these facts we were
able to build a temporal track for each user: an array
of 9251 positions of boolean values. For each of the
9251 positions, the value of this array is set to 1 (or
true) only if the corresponding user is found active or
idle at the time slot with id equals to i, it is set to O
(or false) otherwise. With the temporal tracks, we had
the possibility to lead some experiments regarding the
online/offline behaviour of all the users on the OSN.

Figure 3 shows the number of online users for each
time slot. The figure shows that there is a clear peri-
odic pattern, probably reflecting the day/night cycle.
By analyzing the amount of users online for each time
slot, we can see that we have at most around 18000
online users, roughly 23% of the total amount, and at
least 3000, 3.8% of the total amount of users.

6.2 Preliminary Community Evaluation

An important aspect of our research is the topology
of the social network. As we saw, it is very important
to exploit it at our advantage, so, understanding it, is
a primary concern. The main information we wanted
to mine from the dataset, is the possible presence of
the community structure. To this aim, we extracted
the communities by executing a community discovery
algorithm on the social graph.

We start by recalling that the social graph is a
graph where the nodes are the users and the edges
represent, generally speaking, some sort of relation-
ship between users. Thanks to SocialCircles!, we had
access to friendship relationships of each registered
user. In detail, we got to know, for each registered user,
the friends of the registered user, and the friendship
relationships between pairs of users sharing at least
a common ego. Summing it up, we had access to all
friendship relationships inside each registered user’s
ego network.

Since the presence of the ego brings a lot of noise to
the results due to the fact that it drastically reduces dis-
tances and makes the network clusterized, communi-
ties are, in general, not extracted from the ego network
itself. For this goal, the ego-minus-ego subgraph is
used. After the extraction of the ego-minus-ego graphs
for each registered used, we proceeded in analyzing
the community structure in this small, yet significant
views.

As a preliminary analysis, we computed some
statistical measures on the number and size of the
dynamic communities to compare them with the static
communities to demonstrate the need of a dynamic
analysis to model the real life. Table 1 reports the
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Fig. 3 Online users count during the observed period
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Table 1 Statistical measures on number and size of static
communities

Min Max Mean Std. deviation

Number 1 26
Size 4 1894

9.49583333
99.3878894

4.401405174
141.2894853

computed statistical measures for the static commu-
nities. This table show us that the static view of the
network has a strong structure with respect to the static
communities. In particular, we see that, on average,
each ego network has 10 communities, each made of
100 nodes.

6.3 Dynamic Community Discovery Introduction

Considering the scope of this study, we decided to
define two analysis frameworks: a periodical one (see
Section 5.1) and an evolutionary one (see Section 5.2).
The aim of this work is to show that different com-
munity discovery algorithms lead to different results,
possibly quite distant each other. Indeed, while the two
kinds of analyses aim to the common result of discov-
ering communities, they are conceived to run in dif-
ferent situations. The periodic one is a more canonical
kind of analysis, extremely useful for an a posteriori
study of the network. Since static community dis-
covery algorithms are used for the dynamic periodic
community discovery, it enables a very meaningful
comparison between static and dynamic communi-
ties. Not requiring ad hoc algorithms also incentive
this kind of analysis. Instead, an evolutionary analysis,
while at first glance may seem hard to understand, it is
more natural when communities are needed on the fly.
It also enables a more efficient way to discover com-
munities since they can be updated rather than being
recomputed from scratch.

We computed the community events as described
in Section 3 considering two different sets of commu-
nities:

— All: in this case we considered all the communi-
ties of all ego networks during the observed period
of time of 32 days;

— Selected: consider only the communities in the
time slots where the related ego was offline (inter-
arrival session slots).

With this differentiation we aim to capture a generic,
global view of the dynamism of the network in the

first case, and a more specific, critical view in the sec-
ond case. It is very important to understand how the
network evolves in time.

6.4 Instant-Optimal Dynamic Community Discovery
Results

To carry out the periodical analysis, the first task to be
accomplished was how to inflate topological informa-
tion with the temporal information in our possession.
Since for this first analysis we needed a series of Net-
work Snapshots, the most intuitive way was to use the
temporal tracks as obtained in Section 6.1. In detail,
for each registered user, starting from the ego-minus-
ego defined in Section 6.2 we extracted a snapshot for
each of the 9251 snapshots. The ith snapshot is built
by removing from the ego-minus-ego all the nodes,
and the incident edges, which are found offline (ith
position of the temporal track equal to 0). This way,
each snapshot is made only of the online users and the
relationships between them.

Communities are then discovered on each snapshot
of each registered user using DEMON. As last step, to
discover the events occurring, we tried to match com-
munities extracted from a dynamic ego network with
the ones extracted from the dynamic ego network of
the previous time instant. This choice is driven by the
fact that, if we want to use communities in our sys-
tem, it is important to know the moments a community
is available or not. This way, if a community disap-
pears, even for just one time slot, the event is recorded.
The similarity metric used for this matching is the one
presented in Section 5.1.2. The similarity threshold to
detect a merge or a split event is set to 0. For merge
events, as additional constraint, we also want that, for
each of the source communities, the destination com-
munity is the one with the highest similarity compared
to the other ones in the same time slot. For split events
we have a dual constraint: for each of the destination
communities, the source community is the one with
the highest similarity compared to the other ones in the
same time slot. This additional constraints are used to
give value to the matching of two communities only if
the similarity is the highest recorded.

The very first step was to have a general idea of
the community structure. Table 2 reports some statis-
tical measures of all dynamic communities. Just by
analyzing these results, we can say that the network
is, as expected, very shattered and not even close to
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Table 2 Statistical measures on number and size of all dynamic
communities

Min Max  Mean Std. deviation

Number 0 104
Size 4 452

2.28143443952
17.6435637388

3.75809047
22.10944505

the static view. When considering the number of com-
munities, the high value of standard deviation with
respect to the average, suggests that in some particu-
lar time slots some ego networks have no community
at all. We see that in the static case, Table 1 we have
a lower maximum value and a higher average with
respect to the dynamic case, which suggests that it is
very unlikely to have a dynamic ego network that is
similar to the static one. Also the size statistics con-
firms this fact: static communities tend to be larger
than the dynamic ones. We can explain the difference
in the two results by recalling the fact that we have at
most less than a forth of the users online, as reported
in Fig. 3.

To better understand how the events are arranged
during the observed time, we decided to make some
plots. Figure 4 shows the arrangements of the events
when considering all communities of all time slots
while Fig. 5 shows the events for the selected commu-
nities. Both the figures show that there is a temporal
pattern in the results, suggesting that the behaviour
follows a daily cycle, confirming the results in Fig. 3.
Moreover, on the peaks, the number of merge/split
events are roughly double the number of death/birth
events, while in the nadirs the number of merge/split
events are slightly less than the number of death/birth
events. By taking a closer look at the arrangements of
the events, we may also observe that peaks and nadirs

of merge and split events are slightly moved on the
right with respect to the ones of birth and death events,
which means that, before observing a variation on the
number of split and merge events, we should see a
variation in the number of birth and death events. It is
also worth noticing that, as expected, at each drop of
the events corresponds a peak in deaths, which proba-
bly means that we are approaching the night time slots.
Dually, at each increase of events, we usually see a
peak of birth events, which should corresponds to the
time slots where people wake up. Another important
result is that the two graphs look similar which is sign
that the network behaves in the same way both when
the ego is online or offline. This is of interest in the
sense that all the analysis can be done regardless that
an ego is online or not.

Since the events follow a daily cycle, we are inter-
ested to see how this events are related to the presence
of users on the network. From a comparison between
Figs. 4 and 5 with Fig. 3 we can see that the more
users are online, the more events are observed in the
network. This could be very useful to manage the
problem of data availability. Indeed, it means that, in a
community-based replication technique, choosing the
replicas when there are less users on the network is
somewhat easier because the network is more stable in
terms of communities, while, on the other hand, when
there are a lot of users online, we need to handle more
community events, especially split and merge events.

Finally, to get a more generic trend of the
dynamism of the communities, we analysed how
much communities belonging to the same ego network
discovered in adjacent time slots are similar to each
other. To measure the similarity between this pairs of
sets of communities, we choose a similarity metric
taken from literature: F1-score.
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Fig. 4 Community events for each time slot of all dynamic communities
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Fig. 5 Community events for each time slot of selected dynamic communities

F1-score is presented as a metric to evaluate the set
of communities X obtained as result of a community
discovery algorithm based on a given set Y of ground
truth communities which is based on the concepts of
precision and recall. Precision and recall are two met-
rics used to measure the similarity between two sets
of items and they are defined as follows: given two
sets of labeled nodes, x € X representing an identi-
fied community and y € Y representing a ground truth
community

— The Precision is defined as the percentage of
nodes in x which have labels that are also present
in y. In formula: P = 200!

— The Recall is instead defined as the percentage of
nodes in y which have labels that are also present

in x. In formula: P = %

To evaluate the similarity between the two sets
of communities, each of the identified communities
x is matched to a single ground truth community y
based on the number of common nodes in the two

communities. This matching procedure creates pairs
of communities (x, y), with x € X and y € Y, which
will be used to evaluate the similarity. The quality of
each pair is evaluated separately using the F1-measure
which is obtained by combining precision and recall
as follows: F1-measure = %.

Once we assign a quality for each pair, the F1-score
is simply defined as the average of the Fl1-measure of
the identified pairs.

In our study we are not evaluating the results of
a novel community discovery algorithm, but we are
interested in evaluating the dynamism of the net-
work at a community structure level. For this pur-
pose, we evaluate the similarity of the communities
identified at each time step ¢ with the ones, con-
sidered as ground, identified at the previous time
step t — 1. Computing the Fl-score between adja-
cent, in time, sets of communities should give us
an insight on how much communities affectively
change over time in term of the nodes present in each
community.
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Fig. 6 Fl-score for each time slot of all dynamic communities
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Figures 6 and 7 show the 25th, 50th, and 75th per-
centiles of F1-score obtained respectively for all com-
munities and selected communities. At a first glance
we can observe that Fig. 6, the one which considers all
communities, shows values a little more stable. Both
the figures again show a clear day/night cyclic pat-
tern with peaks which correspond to evening hours
and nadirs immediately after, during night. During the
peaks we observe a very high amount of similarity
reaching 0.6 on average and over 0.9 for the 75th per-
centile, meaning the the network is very stable in terms
of communities. The fact is that these peaks are very
short and only last for few timeslots, corresponding to
less than two hours. Nadirs are also quite short in time
lasting no more than five hours, and often it happens
that also the 75th percentile reaches 0. This means that
during nighttime the community structure is mostly
absent, so it can’t be actively used. Finally, during the
other hours of the day, we can see that the similarity
is quite low, in fact we observe that on average the
F1-score is just above 0.4.

6.5 Temporal Trade-Off Dynamic Community
Discovery Results

At this point, we switched our interest in algorithms
capable of updating communities on the fly. There are
plenty of different community discovery algorithms
in literature, each with strengths and weaknesses. We
only had two requirements for the algorithm to use for
this analysis. Obviously, we only took in considera-
tion algorithms with a definition of community quite
similar to the one given by DEMON. Since defini-
tions of community may vary a lot from algorithm to
algorithm, the constraint was necessary to get results

comparable to the one obtained for the other analy-
sis. The other constraint was related to the nature of
the system we plan to use the result of the algorithm.
Since we want to know and use the community struc-
ture for important functionality of distributed systems,
we had to choose an algorithm which can be possi-
bly implemented in a P2P fashion. Considering these
constraints, the choice fell on TILES.

To be used, TILES requires that the network is rep-
resented with the Temporal Network model. While it
was possible to exactly represent our network accord-
ing to the Network Snapshot model, due to the fact
that the temporal information in our possession was
already discretized, it wasn’t possible for the needed
model. The problem is that we had no information
about the actual order in which nodes joined or left the
OSN. So, to obtain a Temporal Network representa-
tion of our dataset we had to make some modifications
to our dataset. TILES, the algorithm choice for the
analyses, requires an edge streaming source but the
temporal information in our possession is node based.
To realize the transformation we proceeded in the
following way: if a node maintains its state from a
time slot to the following one, no action is performed.
Otherwise, if a node joins the network, a new edge
addition is added to the interaction source for each of
its online friends. The exact order in which these inter-
actions, created when a node switches its state from
offline to online, are added to the source is completely
random, but their time label is the same. Having the
same time label lets us, when extracting the results,
to always consider communities where all the inter-
actions from the same time slot have been processed.
Dually, when a node leaves the network, switching its
state from online to offline, a new edge deletion is
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Fig.7 Fl-score for each time slot of selected dynamic communities
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Table 3 Statistical measures on number and size of dynamic
communities

Measure Min Max Mean Std. deviation
Number 0 74 4.041437412 4.1011431095
Size 3 336 7.609 9.55

added to the interaction source for each of its online

friends. Offline neighbours are ignored because the
interaction with them have already been deleted when
they went offline. Again, the order in which this set
of interactions is added to the source is random, but
they all have the same time label. The time label of
each interaction (addition or deletion) is the id of the
current time slot scanned. For the sake of clarity, after
analyzing all the interactions with id < x, we have the
same network of the x — th snapshot.

Once obtained the complete list of ordered and
time labeled interactions, we were able to extract them
using TILES. Since we have rather meaningful tempo-
ral information about both the joining and the leaving
of users, we decided to use the version of the algorithm
with explicit removal of interactions. In the explicit
version of the algorithm, edges are deleted only when
the source emits a specific interaction deletion. In the
vanilla version of the algorithm, it was possible to set
a time to leave ¢/ as input parameter. An interaction
is deleted after 7¢/ amount of time after its insertion.
The observation threshold was set to 1, so that com-
munities are extracted once for each time slot and the
results can be compared to the ones obtained from the
previous analysis technique. Finally, we recall that, in
the Temporal Trade-off Community Detection analy-
ses, community events are detected as communities

are reevaluated. Thus, there is no need to define any
similarity metric, nor to match community anyhow to
detect community events.

In a preliminary study, we simply observed the
size and the number of dynamic communities. Table 3
shows some statistical values on number and size of
communities as returned by TILES. In particular, we
see again that the minimum number of communities
is 0, meaning that there is at least one timeslot dur-
ing which there are no communities at all. A lower
maximum value together with an higher mean value
suggest us that the community structure is even more
shattered with respect to the previous study. In partic-
ular, we see that communities tend to be smaller, with
less than half nodes, but almost double in number.

Figure 8 shows the registered events considering all
communities of all timeslots, while Fig. 9 only con-
sider the selected communities. The two figures seem
quite similar, the main difference between the two is
that the number merge and split events do not change
substantially, while death and birth event counts are
lower by 200. If we compare these figures with the
ones produced by the previous analysis (Figs. 4 and
5) we see great changes. First of all, while the death
count is again comparable to the birth count, merge
and split counts are quite different each other. Split
events have become quite rare, in fact only few of
these events, during all observation, are detected. In
turn, we observe some merge events which peaks are
less emphasized with respect to the previous analy-
ses. The second major change we observe is in the
effective number of events. We recall that in the pre-
vious analyses we observed around 75 merge and
split events plus 40 death and birth events. In these
new analyses merge events are again around 75 each
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Fig. 8 Community events for each time slot of all dynamic communities
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Fig. 9 Community events for each time slot of the selected dynamic communities

timeslot, we already said that split events are rare,
but, unexpectedly, birth and death registered events
are between 500 and 700 during the central part of
the day. During the night, death and birth events drop
below 100, while merges often reach 0. These oppos-
ing results can be explained in a great number of small
communities, probably just triangles, assembling and
disassembling at a quick pace. The relatively small
amount of communities registered during the simula-
tion also suggest us that all these communities hardly
live long enough to be registered at the end of the
timeslot. This effect can be considered as interference
as these communities has a lifetime so short that can’t
be used anyhow. The only property remained almost
unchanged is the periodic temporal pattern.

Then, once again, we evaluated the overall stability
of the community structure with F1-score. Figures 10
and 11 show the 25th, 50t, and 75th percentiles of F1-
score obtained respectively for all communities and
selected communities. The daily pattern guided by the

succession of day and night is still present and fol-
lows the same pattern as the previous analyses: high
similarity values during the day, a considerable peak
in the late evening, then a nadir in the night. We can
also observe that, overall, the similarity is significantly
increased, in fact the 25th percentile is now around
0.4, while the 50th percentile is just below 0.6 during
the day, which corresponds to an increase of 0.2 on the
F1-score value. We also observe an increase of about
0.1 to the Fl-score of the 75th percentile. While we
observe a considerable increase in the similarity met-
ric of these dynamic communities, with respect to the
ones discovered in the previous analysis, we still have
to say that the community structure is pretty unsta-
ble. If we consider the events results combined with
this similarity results, we suppose that with further
investigation we can find a subset of these communi-
ties which are core communities, namely communities
which are resilient to churn and have a lifespan much
longer than the typical one.
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Fig. 10 Fl1-score for each time slot of all dynamic communities
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Fig. 11 Fl-score for each time slot of selected dynamic communities

7 Conclusion and Future Works

In this paper we faced the application of dynamic com-
munity discovery to manage DOSNSs challenges. The
paper is led by the two research questions introduced
in Section 1. Considering the first research question
we firstly propose a static analysis of communities
in DOSNSs to have a general view of the static case.
Results of our analysis showed that dynamic commu-
nity discovery is needed in a distributed environment,
such as a DOSN, because the static community dis-
covery does not provide a real view of the changes
happened in the social graph. Indeed we observe that
the network is very shattered, not even close to the
static view with respect to both presented frame-
works. This difference clearly suggests us the need a
distributed algorithm able to manage the dynamism
of communities. As a consequence, we investigated
the second research question. We focus our atten-
tion on two kind of dynamic community discovery
approaches: the Instant-optimal Community Detection
and the Temporal Trade-off Community Detection,
proposing an analysis framework for each approach.
Moreover, we also proposed a set of community
change events which are important in our scenario,
described in this paper. We analysed the arrangement
and the frequency of these events by exploiting a real
Facebook dataset gathered by our Facebook applica-
tion (SocialCircles). The community change events
introduced in this paper have a temporal pattern that
is similar to the temporal user behaviour. We analysed
the differences between the two proposed approaches
by considering both the community change events
and the similarity between the communities expressed
by the Fl-score. As concerns the second research
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question, we analysed in detail the pros and cons of
the two approaches mentioned above, coming to the
conclusion that the Temporal Trade-off Community
Discovery represents the best choice in DOSNS. In the
future, we plan a deep analysis of the instability of the
social graph due to the online/offline status of users. In
particular, we plan to develop a distributed algorithm
to detect the dynamic community by exploiting the
Temporal Trade-off Community Discovery approach,
which can be used in DOSN’s to manage several prob-
lems, such as data availability, information diffusion,
and privacy.
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