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Feature‑rich multiplex lexical 
networks reveal mental strategies 
of early language learning
Salvatore Citraro 1,2, Michael S. Vitevitch 3, Massimo Stella 4,5* & Giulio Rossetti 2,5*

Knowledge in the human mind exhibits a dualistic vector/network nature. Modelling words as vectors 
is key to natural language processing, whereas networks of word associations can map the nature 
of semantic memory. We reconcile these paradigms—fragmented across linguistics, psychology 
and computer science—by introducing FEature‑Rich MUltiplex LEXical (FERMULEX) networks. This 
novel framework merges structural similarities in networks and vector features of words, which can 
be combined or explored independently. Similarities model heterogenous word associations across 
semantic/syntactic/phonological aspects of knowledge. Words are enriched with multi‑dimensional 
feature embeddings including frequency, age of acquisition, length and polysemy. These aspects 
enable unprecedented explorations of cognitive knowledge. Through CHILDES data, we use 
FERMULEX networks to model normative language acquisition by 1000 toddlers between 18 and 
30 months. Similarities and embeddings capture word homophily via conformity, which measures 
assortative mixing via distance and features. Conformity unearths a language kernel of frequent/
polysemous/short nouns and verbs key for basic sentence production, supporting recent evidence 
of children’s syntactic constructs emerging at 30 months. This kernel is invisible to network core‑
detection and feature‑only clustering: It emerges from the dual vector/network nature of words. Our 
quantitative analysis reveals two key strategies in early word learning. Modelling word acquisition 
as random walks on FERMULEX topology, we highlight non‑uniform filling of communicative 
developmental inventories (CDIs). Biased random walkers lead to accurate (75%), precise (55%) and 
partially well‑recalled (34%) predictions of early word learning in CDIs, providing quantitative support 
to previous empirical findings and developmental theories.

The mental lexicon is the part of memory that stores information about a word’s meanings, syntactic features, 
pronunciation and  more1–3. Although often described as being like a mental  dictionary1,4,5, the mental lexicon is 
not static, and is instead a complex system, whose structure influences language processing and has been inves-
tigated across fields like  psychology1,  linguistics3,6, computer science and artificial  intelligence7–9. Decades of 
multidisciplinary research have gathered evidence that words in the mental lexicon have a dual  representation5, 
analogous to the particle/wave duality of light in  physics10. Psycholinguistics and distributional semantics posit 
that words in the lexicon possess both a networked  organisation11–13 and a vector-space  nature14–17. On the 
one hand, networks capture conceptual relationships (as links) between words (as nodes). On the other hand, 
vector-spaces identify alignment and distances between vectors, whose components represent word features. 
The network aspects of the mental lexicon started with seminal work by  Quillian12 and by Collins and  Loftus11. 
These works showed how in a network of words linked through semantic associations, e.g. possessing a common 
attribute or overlapping in meaning, the length of the shortest path separating concepts was predictive of retrieval 
times from semantic memory and sentence  understanding11,12. The advent of network science has revived interest 
in this  approach6, with several recent works examining how the structure of semantic  networks18–22, phonological 
 networks13,23, and their multiplex  combination24–26 influence language acquisition and processing.

In parallel, distributional semantics postulates that semantic memory possesses a vector space  structure14,15,27, 
where concepts are vectors whose components express either interpretable  features28 (e.g. possessing a semantic 
feature, being in a category or being acquired at a certain age) or latent aspects of  language16,27,29,30 (e.g. overlap 
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in meaning due to word co-occurrence in the same context). Although latent aspects of language limit the 
understanding of cognitive processing, models like Latent Semantic  Analysis16 and the Hyperspace Analogue to 
 Language30 were used extensively in cognitive inquiries of information processing, mainly due to their ability to 
extract semantic features without human intervention. More recently, transformer neural networks like BERT 
enabled vector representations for words depending on their  context14. This enhancement revolutionised the 
field of natural language processing and predicted successfully semantic tasks like entity recognition or word 
meaning  disambiguation14,29. Although powerful predictors, these approaches provide relatively little access to 
the organisation of words in the human mind and can thus benefit from network models and interpretable dis-
tributional  semantics29. Reconciling the non-latent, interpretable vector/network duality of words in the mental 
lexicon is the focus of this work.

We introduce FEature-Rich MUltiplex LEXical - FERMULEX - networks, a framework combining the vector-
based and multiplex network aspects of words and their associations in the mental lexicon. Rather than merely 
building networks out of similarities between vectors of  features31, we view structure and feature similarities as 
two independent building blocks, whose contribution to represent words in the mind can be explored in parallel. 
Hence in FERMULEX networks, network structure remains and can be explored even when word similarities are 
switched off, and vice versa. This possibility does not exist in networks built from vector similarities (cf.32). We 
achieve this advancement by using the recent measure of  conformity33, an enhancement of assortative mixing 
estimation through non-adjacent nodes.

As outlined in Fig. 1A–C, FERMULEX starts from a given multiplex network structure, where nodes repre-
sent concepts/words linked by different types of conceptual associations (Fig. 1A). We focus on layers that were 
found to predict early word learning in toddlers and consider semantic, syntactic and phonological associations 
between words  (see7,24 and “Methods”). Each word is also endowed with a vector of psycholinguistic features, 
i.e. features of relevance for lexical acquisition, processing and  storage3. We here endow words with vectors of 
interpretable features, like frequency, length and polysemy (Fig. 1B). In FERMULEX, merging network structure 
with vectorial similarities means measuring how similar any two nodes/vectors can be according to their vector 
similarity, weighted through network connectivity. This is quantitatively implemented via  conformity33, which 
measures a tendency for nodes/words with similar vectors to be separated by shorter distances (i.e. fewer links). 
Each node receives its conformity score, leading to a richer (in terms of nodes features) multiplex representation 
(Fig. 1C) of conceptual knowledge in the mental lexicon.

We show that the dual network/vector representation of words is crucial for understanding key aspects of the 
mental lexicon that would go undetected by considering features—or networks—only. Using normative word 
learning  norms34 and phonological/semantic/syntactic24 data in 1000 English toddlers, FERMULEX networks 
reveal a language kernel progressively built in the mental lexicon of toddlers and undetectable by either network 
core  detection35 or clustering in vector  spaces36. This mental kernel contains general yet simple nouns and verbs 
that can build diverse sentences, with crucial relevance to children’s  communication37. The identification of this 
kernel via FERMULEX provides quantitative evidence and modelling insights as to how can young children 
produce early sentences, as recently  observed37.

Modelling word acquisition as increasingly biased random walkers over the network/vectorial FERMULEX 
representation leads to more insights. We adopted this approach inspired by past work using random walkers 
over cognitive networks for investigating the mental  lexicon38. We find that predicting word learning in the 
language kernel crucially depends on: (i) network/vectorial  conformity33 and (ii) the filling of communica-
tive developmental inventories (CDIs)39, i.e. lists of words sharing a semantic category and commonly used 
for measuring early cognitive development. We find that CDIs display a rich filling dynamic in word learning, 
which can be predicted by our biased random walkers. The results are statistically significant with respect to a 
baseline random learner. Without combining structural and attributive information as well as CDI filling levels, 
in fact, predictions of word learning in the language kernel are equivalent to random guessing. Since the language 
kernel stores words crucial for producing early sentences, our results indicate that the documented ability for 
young toddlers to communicate via early sentences around month  3037 crucially depends on network, vector, 
and categorical aspects of the mental lexicon. Our approach with FERMULEX can encompass them all and thus 
represents a powerful tool for future cognitive research of various aspects of language.

Results
FERMULEX characterisation. A combination of a multiplex network structure (Fig.  1A) and a vector 
space of interpretable features (Fig. 1B) results in a FERMULEX network (Fig. 1C).  Conformity33 assesses struc-
ture-feature relationships on the aggregated topology. For each node and with respect to each feature, conform-
ity quantifies the node assortative mixing, by extending this estimation to the non-adjacent but still reachable 
neighbors of a node. Studying conformity distributions, we can capture heterogeneous patterns between nodes.

Figure 1D sums up these patterns on the real data representing toddlers’ mental lexicon (see “Methods” for 
details on network layers and vectors of word features). Conformity with respect to frequency highlights an 
assortative mixing pattern but limited only to highly frequent words, i.e. only words occurring many times in 
child-directed speech tend to connect with each other in children’s FERMULEX network. This effect is absent 
in lower-frequency words and it was not detected in single-layer semantic networks of  adults40. Conformity of 
word length highlights an assortative mixing pattern of very short words only. These two effects are expected to 
be related as shorter words tend to be more frequent in  language25.

Interestingly, conformity quantifies that polysemous words are likely to connect to each other to a smaller 
extent than most frequent and shortest words. This indicates an organisation of concepts where unambiguous/less 
polysemous words are linked to ambiguous/more polysemous words. This heterogeneous mixing by polysemy 
could be beneficial in providing context and differentiating among possible meanings of a polysemous word, as 
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suggested by previous  studies40,41. If all ambiguous words were grouped together, sense disambiguation could 
not rely on links including less polysemous/unambiguous words and this homogeneity would ultimately violate 
the frequency-meaning  law42.

The above assortative mixing patterns are not a consequence of feature/distance distributions, because reshuf-
fling node labels (Null Model 1) and rewiring links (Null Model 2) disrupt the heterogeneous mixing behaviour 
among classes (see “Methods” and SI). Hence, the above patterns indicate the presence of a core-periphery 
organisation in the dualistic multiplex/feature-rich structure of the mental lexicon: A set of highly frequent/
shorter/polysemous words linked with each other creates a network core highlighted by conformity and invisible 
to previous  inquiries7,24. This preliminary evidence calls for further analysis of the core.

Figure  1E introduces an analysis of the core performed on: (i) dualistic network/vector and (ii) individual 
aspects of words in the mental lexicon of toddlers (see “Methods” and SI). We aim to find a language core that 
contains groups of words sharing similar structure-feature relationships. Among the six optimal clusters found 
(see “Methods” and SI), groups A and B (blue and gold) contain mostly short words. Cluster F (cyan) contains 
highly frequent words. Cluster D contains short, highly frequent and a relevant portion of polysemous words. 
Sets of clustered words with such features are known as language kernels in cognitive network  science18,19,25. 
Language kernels facilitate communication through a small set of simple words suitable for expressing ideas in 

Figure 1.  (A–C) Combining multiplex topology (A) and vector spaces (B) results in FERMULEX network (C); 
(D) kernel density estimates (KDEs) and ridgeline plots highlight conformity distribution for the frequency, 
length, and polysemy features in toddlers’ mental lexicon and the randomised variants; (E) Above—two-
dimensional scatter plot of conformity vector space, where each point is colored according to the cluster the 
point belongs to (K-means algorithm); Below—distribution of word features within each cluster, where a 
kernel language emerges, i.e. the cluster labeled as D; (F) content characterisation of the kernel compared to a 
competitor from a k-core decomposition.
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multiple  contexts19. The conformity core (cluster D) satisfies this definition. In fact, 13% of the core is made of 
nouns, 33% of verbs and the other 54% include adjectives, adverbs and pronouns, which make it more likely to 
assemble syntactically well-formed sentences by random sampling compared to other word clusters (cf. Fig. 1F). 
Identifying a network core via k-core  decomposition35 shows almost no meaning organisation and more expres-
sions that are syntactically unrelated . See two random samples in Fig. 1F: The conformity cluster can form 
syntactically coherent trigrams such as “Get Back Here” and “Boy Take Toy”, whereas the same does not happen 
in the only network-based core. Analogously, K-Modes43 attribute-only clusters are unable to form syntactically 
coherent bigrams. See SI for an analysis centered on computing the internal syntactic coherence of the cores. 
These comparisons provide unprecedented evidence showing a syntactically advantageous organisation of words 
in early children’s lexicon. This phenomenon goes undetected unless both the network and vector nature of 
words in the mind is considered.

Topology and cognitive relevance of the conformity core FERMULEX. We further compare the 
conformity core with the k-core  decomposition35 (where similarities are switched off) and with the most relevant 
K-Modes cluster (where network structure is switched off). Interestingly, the conformity core appears to be a 
synthesis of the other two potential language kernels. Figure 2C characterises the three cores with several quali-
tative functions assessing intra-cluster connectivity and inter-cluster distinctiveness (cf. “Methods” and the SI). 
The K-Modes core contains a rich set of short, highly frequent and polysemous words compared to the conform-
ity core. The conformity core contains a more homogeneous set of words, which is crucial for syntactic sentences 
mixing specific and more general  concepts19,41,44. The structural k-core has high transitivity, but the conformity 
core has a more cliquish configuration due to higher hub dominance  score45. Cliquishness was recently shown 
to correlate with better recall from  memory46 due to the concentration of spreading activation in the  clique21. 
These recent studies suggest that the higher cliquishness found here for the conformity core might be beneficial 
for language processing in toddlers. The conformity core also displays high values of conductance and cut ratio: 
this language kernel possess a dense internal structure but it is also strongly connected to the rest of the graph 
as well, considerably more than the other competitors. In other words, the conformity core is strongly internally 
connected (more than k-core) and homogeneous with respect to the features (more than k-mode). This higher 
connectivity might reflect an advantage in accessing and producing items from the language kernel in view of 
activation spreading models of the mental  lexicon6,21,22,26.

Language kernel entanglement. We aim to further investigate the multiplex structure of the conformity 
core even through layers. To this aim, we leverage the concept of layer  entanglement47,48, assessing how much 
the layers overlap and are balanced in the multiplex core against the whole multiplex structure. In detail, layer 
entanglement can be captured by two  measures47: Entanglement intensity I, that computes how much layers 
overlap with other layers, and entanglement homogeneity H, that measures how much nodes are connected in a 
balanced way across layers. In the whole multiplex structure, we find that Itot = 0.09 and Htot = 0.83 , while in 
the conformity core/language kernel we find higher intensity and lower homogeneity values, Ikernel = 0.29 and 
Hkernel = 0.64 . A higher entanglement intensity in the kernel ( Ikernel > Itot ) demonstrates that such group of 
words, highlighted by network/vector conformity, acts as a core in the multiplex network: Layers are more entan-
gled, i.e. concentrate more links, within this core rather than in the whole multiplex structure. A lower entangle-
ment homogeneity in the kernel ( Hkernel < Htot ) indicates that one or more layers are over-represented in the 
kernel itself. Looking at the counts of links from different layers with both endpoints within the kernel, we notice 
that co-occurrences constitute most of the links in the kernel (0.76% of co-occurrences against 0.19% of associa-
tions and 0.05% of phonological similarities). This finding provides additional evidence that the observed lan-
guage kernel is crucial for syntactic relationships, which are best captured by child-directed co-occurrences49,50. 
Interestingly, excluding the layer of co-occurrences from the multiplex network does not alter the presence of 
the kernel (see SI) nor its entanglement: Entanglement values of the kernel without co-occurrence links do not 
drastically change, i.e. Ipartial_core = 0.39 and Hpartial_core = 0.77 . Moreover, layer entanglement can be com-
puted on a temporal network as  well47. By creating subgraphs of the original multiplex network with the first 200, 
300 and 400 learned words, we registered values of H and I analogous to the ones of the full multiplex network. 
Interestingly, the above findings indicate that the language kernel highlighted by the interplay of vector and 
network features is highly entangled across semantic, phonological and syntactic aspects of the mental lexicon 
and it persists over time. These patterns further suggest the kernel/core might play a relevant role for supporting 
cognitive processing (see “Discussion”).

Normative word learning as random walks on FERMULEX. To investigate how the conformity core 
and the whole FERMULEX structure emerge over time, we adopt a random walk framework. Random walks 
on cognitive network structures have successfully modelled phenomena like Zipf ’s  law42 or semantic  priming38. 
Here, we use structure-feature biased random walks to explore normative language learning, as reported in 
Fig. 2.

The simplest idea is to limit the walk to network structure only (Graph Walk 1). To explore the interplay 
between topology and features of words, we can weigh network links with the similarity between vectors repre-
senting adjacent words (Graph Walk 2). Let us consider an example. In Fig. 2, at t2 , Graph Walk 1 should choose 
to learn either cat or daddy after the current word mommy. Because of network/vectorial similarities, Graph 
Walk 2 will select daddy as the next-to-be-learned word. We can expand the set of next-to-be-learned candidate 
words: Graph Walk 3 encodes this parallel word learning process by considering as potential candidates all 
neighbors of already learned words. With reference to Fig. 2A, at t3 , Graph Walk 2 can only move to and learn 
friend, while Graph Walk 3 can also activate and learn cat after mommy. Focus is given to considering how these 
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models can predict the assembly over time of: (i) the conformity core, and of (ii) Communicative Development 
 Inventories39 (CDIs), which are commonly used by psycholinguists to measure a child’s communicative, recep-
tive and expressive abilities. CDIs are clusters of words from the same semantic category—e.g. a list of words all 
relative to time—and thus represent a portion of the whole vocabulary available to  children51.

CDIs are not filled uniformly under normative learning. In the CHILDES  data51, toddlers are found 
not to learn CDIs uniformly over time (cf. Fig. 2B). This means that some semantic domains of toddlers’ lexicon 
are filled earlier during normative learning. However, the above random walkers do not include information 
about the semantic category a word belongs to. Graph Walk 4 proposes a CDI-based similarity integrating infor-
mation about CDIs’ availability and attractiveness. In the figure, at t2 , Graph Walk 4 moves from mommy to cat, 
because Animal-CDI is relatively emptier than People-CDI, i.e. People already contains mommy. However, at t4 , 
the model learns friend from daddy, because the feature similarity equation term is stronger than the CDI-based 
ones (see “Methods” and SI).

Figure 2.  (A) Random walks combining progressively structure and vector information (Graph Walk 1–3) 
and CDIs integration (Graph Walk 4); (B) Above—CDIs filling in CHILDES normative learning; bars show 
that CDIs are not uniformly filled over time, e.g. more than half of Body and Vehicle categories are learned 
during early stage acquisition, whereas Questions and Time emerge later; Below—precision-recall evaluation 
over selected CDIs; solid bars identify statistically significant scores compared to a random learning baseline; 
(C) Left—precision-recall evaluation with respect to early acquisition of kernel words; Right—kernel 
characterisations using several quality measures.
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Toddler’s language kernel rises from CDI density and network/vector dualities. Figure 2C, left 
reports precision and recall in reconstructing the conformity core early on during cognitive development. Per-
formance metrics statistically higher than random learning (significance of 0.05, see SIB) are highlighted with 
full bars. Non-significant results are visualised as dashed bars. The normative growth of children’s language ker-
nel was captured with a precision higher than random learning only by our most advanced model, combining 
CDI density, multiplex network structure and feature similarities. This provides strong evidence that semantic 
spheres and their filling over time provide insights additional to network/vector duality for capturing how early 
production of syntactically coherent sentences is  achieved37. Compared to other CDIs (see next section), our 
walkers achieved a relatively lower precision in predicting the assembly of the conformity core. This indicates 
that the language kernel does not emerge all at once during early cognitive development, unlike other kernels 
highlighted in older  children25. The emergence of the conformity core is thus a gradual phenomenon, that is not 
strongly biased by similarities and cannot thus be captured by biased random walks only.

Random walks highlight different strategies at work in different CDIs. Random walks produce 
word ordering lists that we evaluate with respect to CHILDES normative ordering, i.e. the order in which most 
children produced words over time (Fig. 2B-above). Random learning is used as a baseline to test whether walks 
considering word topology and feature predict more words as correctly learned over time. See “Methods” and SI 
for details of our statistical approach.

Table 1 presents a coarse-grained evaluation of the walkers (cf. “Discussion”). Figure 2B sums up results with 
respect to CDIs focusing on the very early stage of acquisition, which corresponds to N = 100 words learned 
before 21  months24. The selected CDIs are captured differently by the models. CDIs like People and Prepositions 
are predicted with higher-than-random precision and recall for all Graph Walk models. CDI-MaxSim precision 
is slightly better than in the other models. Interestingly, the two most filled CDIs in this stage of acquisition, i.e. 
Body and Vehicle, are predicted with high precision but low recall (cf. “Methods” and SI). This means that the few 
words predicted are the expected ones, but the models cannot fill the CDIs. ExtCand precision is higher. Not all 
CDIs can be predicted in this way, e.g. Action and Household. Furthermore, model performances for Household 

Table 1.  Model performances over each bin of acquisition. Relevant CDI fraction is the ratio of statistically 
significant precision/recall values against a random learning model.

Accuracy Relevant CDIs Precision Relevant CDIs Recall Relevant CDIs

AoA < 21

Random learning 0.67 – 0.17 – 0.19 –

Struct 0.70 0.26 0.40 0.64 0.30 0.58

MaxSim 0.76 0.26 0.37 0.70 0.34 0.52

ExtCand 0.65 0.21 0.55 0.76 0.30 0.58

CDI-MaxSim 0.75 0.42 0.25 0.58 0.34 0.47

< AoA < 23

Random learning 0.71 – 0.17 – 0.19 –

Struct – 0.00 0.24 0.64 0.24 0.71

MaxSim 0.82 0.36 0.28 0.57 0.25 0.64

ExtCand 0.83 0.26 0.24 0.42 0.24 0.50

CDI-MaxSim 0.66 0.10 0.26 0.71 0.26 0.71

< AoA < 24

Random learning 0.69 – 0.17 – 0.19 –

Struct 0.73 0.21 0.19 0.42 0.21 0.52

MaxSim 0.75 0.36 0.17 0.42 0.23 0.42

ExtCand 0.73 0.31 0.20 0.21 0.21 0.52

CDI-MaxSim 0.69 0.21 0.19 0.52 0.23 0.52

24 < AoA < 26

Random learning 0.70 – 0.17 – 0.19 –

Struct 0.73 0.31 0.20 0.44 0.22 0.61

MaxSim 0.72 0.31 0.21 0.38 0.26 0.44

ExtCand 0.71 0.42 0.18 0.33 0.22 0.50

CDI-MaxSim 0.72 0.31 0.23 0.38 0.22 0.44

AoA > 26

Random learning 0.61 – 0.24 – 0.24 –

Struct 0.68 0.78 0.32 0.72 0.36 0.61

MaxSim 0.70 0.84 0.33 0.77 0.35 0.66

ExtCand 0.64 0.52 0.28 0.44 0.29 0.66

CDI-MaxSim 0.79 0.31 0.33 0.77 0.41 0.66
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are not distinguishable from a random learning, i.e. all bars are dotted. The high recall but the low precision of 
Action is poorly relevant: less of 0.1% of the CDI is covered in this stage of acquisition (however, cf. the SI, where 
Action category is well captured in other stages).

Discussion
This work introduces a cutting-edge combination of  network1,11,18 and  vector15,16 aspects of knowledge in the 
human mind, which historically run in parallel when modelling language and its cognitive  processes6.

Using data from 1000 toddlers between 18 and 30 months from the CHILDES  project51, our FERMULEX 
network revealed a core of words facilitating word  production44 and invisible to methods based on network 
 structure24,25,35 or vector similarities only. This core was detected via  conformity33, a metric extending assortative 
mixing estimation in a multi-scale, node-centric fashion. Our numerical experiments identified this core as a 
set of highly frequent, short, polysemous and well-connected nouns and verbs, i.e. a language kernel containing 
concepts versatile enough to communicate via basic sentences (cf.19) and whose access via spreading activation 
is facilitated by network  connectivity6,21,46. Revealing the presence of such a core through our analyses provides 
for the first time quantitative support of recent empirical findings showing that typical learners can start com-
bining words in basic sentences after 30 months of  age44. The kernel persisted even when co-occurrences from 
child-directed speech were ignored (see SI): the conformity core emerged from an interplay between semantic/
phonological associations and psycholinguistic norms in the mental lexicon of linguistic knowledge.

It is important to underline that previous network-only models using the same  data7,24 were not able to 
highlight such kernel. Analogously, as shown here, focusing only on vectorial similarities could not identify 
such kernel either. We thus consider the combination of vectorial and network aspects of associative knowledge 
to represent an interesting “third direction” of investigation, merging aspects of relevance for investigating how 
the cognitive reflection of language works. FERMULEX inherits from networks the ability to map the local and 
global layout of associations words engage in, e.g. phonological degree explaining patterns of short-term memory 
 retention1 or network distances reproducing patterns of semantic similarity  judgements21. From vector models 
of words, i.e. word  embeddings14,52, FERMULEX inherits the ability to encode features of concepts beyond mere 
network patterns, potentially leading the way to future investigation of distributional  semantics17 integrating 
network science within a coherent, mathematical framework.

To investigate the assembly over time of such a crucial core of linguistic knowledge, we implemented artificial 
models of word learning as biased random walks over FERMULEX, inspired by past approaches using walkers 
to investigate the mental  lexicon38,42. We found that the conformity core does not emerge suddenly over time, 
differently from other language kernels modelled as viable component in other  studies25. Instead, the conformity 
core is progressively built in ways that are captured only by combining the network and vector aspects of words 
together with CDI filling rates. This finding quantitatively stresses that the conformity core—containing building 
blocks for producing syntactically coherent words—emerges from strategies dependent on semantic categories, 
which are partly captured by  CDIs51.

We also used the same random walkers for capturing how different CDIs filled over time through normative 
learning, giving unprecedented  focus24 to learning strategies for individual aspects of children’s knowledge. In 
our analyses, different CDIs are found to fill at different times over developmental stages, further emphasizing 
that language learning is not a uniformly random process. Inventories relative to food and action themes are 
found to be predicted well by our model, confirming recent independent  studies49,53 that these salient familiar 
themes are crucial for predicting early language acquisition.

Notice also that words in some CDIs might be learned according to context-specific  strategies54,55, so that a 
single, general word-learning strategy might not fit all cases. For instance, according to the Pervasiveness Hypoth-
esis by Clerkin and  colleagues55, toddlers would tend to learn earlier words more frequently occurring across 
several daily contexts. This visual prevalence/occurrence would be crucially missing from CDIs like Household 
or Action, which were in fact poorly reproduced by our model. These negative findings indicate the presence of 
local strategies for learning words in physical settings that are at work in toddlers but missing from the current 
instance of FERMULEX.

For inventories like Body or Vehicle, a combination of network structure and feature similarities corresponded 
to a significant boost in precision over predictions from random learning. This is quantitative evidence for 
combining network and vector aspects of the mental lexicon. A further boost in precision was found when the 
random walker was allowed to backtrack. This indicates that some components of the mental lexicon are not 
built sequentially, without appending words to the most recent lexical item, as assumed in attachment kernel 
 models56, but rather filling gaps in the whole vocabulary available to children, as shown also by other approaches 
with persistent homology and gap  filling57.

Interestingly, recency in word acquisition is found to be more a powerful strategy for reconstructing the 
filling of CDIs like People or Prepositions, where our most elaborate random walker based on recency beats the 
back-tracking one. Our quantitative results open the way for further discussion and interpretation in light of 
psychological studies behind early language learning.

This first conception of FERMULEX has some key limitations, which can be addressed in future research. 
For example, our approach considers only normative learning, i.e. how most children learn words over  time24. 
This learning dynamic might be different from how individual children with different language learning skills 
might learn words over  time8. Future research should thus test the presence of the language kernel and its time-
evolution dynamics in a longitudinal cohort of children. Since the occurrence of the language kernel characterises 
normative learning in a large population of 1000 and more  toddlers51 and it supports the production of early 
sentences observed in normative  talkers37, we expect for the kernel to be present in normative learners but also 
to be disrupted or incomplete in late  talkers58. If supported by data, then the language kernel revealed here could 
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become a crucial early predictor of delayed language development in young children. Another limitation is that 
our predictions do not treat learning as the outcome of a statistical process, where words are learned with certain 
probabilities. Rather we model word learning as a binary learned/not learned process. We chose to follow this 
approach for model parsimony and indicate the addition of statistical  learning59 within the FERMULEX frame-
work as an exciting future research direction. Future enhancements of random-walk models should account also 
for distinctiveness in addition to similarity. The recent work by  Siew60 indicates that global feature distinctiveness, 
i.e. how many different semantic features are possessed by a word, correlates with earlier acquisition. Hence, 
random walkers accounting for switches between distinctiveness and similarity might enhance prediction results 
and represent an exciting future research direction. Another important approach for future research might be 
casting language acquisition as a percolation problem, which has been explored in feature-rich networks only 
 recently61. An important limitation of our study is that it adopts CDIs for modelling language learning, however 
these inventories are not grounded in theories from cognitive  psychology39 but were rather created ad-hoc by 
psycholinguists. Future instances of FERMULEX networks should rely on word learning data that is more rep-
resentative across semantic and syntactic categories.

Methods
Multiplex layers. We modelled word learning as a cognitive process acting on a mental representation of 
linguistic knowledge. Structure in this representation is given by a multiplex lexical network, where nodes repre-
sent words that are replicated and connected across different semantic and phonological levels of the  network24.

Only layers of relevance for word learning acquisition were  considered24, namely: (i) free associations, indi-
cating memory recall patterns between words from semantic  memory62, (ii) co-occurrences in child-directed 
 speech24,51, (iii) feature-sharing norms, indicating which concepts shared at least one semantic feature from the 
McRae  dataset63 and (iv) phonological  similarities13, representing which words differed by the addition/sub-
stitution/deletion of one phoneme only. Hills and colleagues showed that the words with larger degrees in free 
association networks were also more likely to be acquired at earlier ages, a phenomenon known also as lure of the 
associates (cf.  also64). A subsequent study by Carlson and  colleagues65 found a similar effect also in phonological 
networks built from child-directed  speech13. Investigations of co-occurrence and feature sharing networks by 
Beckage and Colunga reported that highly connected words were distinct trademarks of early word production 
in typical  talkers9. Importantly, these four aspects of knowledge in the human mind produced network repre-
sentations that were  irreducible24. Layers represented different connectivity patterns among words and could 
thus not be aggregated or erased without decreasing structural information about the system in terms of Von 
Neumann graph entropy.

Normative age of acquisition. Network models of language acquisition often use normative datasets 
that follow the development of language production in  toddlers64. The most prominent data source is CHILDES 
(Child Language Data Exchange System), a multi-language corpus of the TalkBank system established by 
MacWhinney and Snow, storing data about language acquisition in toddlers between age 16 and 36  months51. 
No new experiments were conducted in the current study, and no new data were generated accordingly. Data 
were granted to the corresponding author by the TreeBank project after a request from the CHILDES platform 
(https:// child es. talkb ank. org/) for secondary analysis. CHILDES and TreeBank have IRB approval and guide-
lines (https:// talkb ank. org/ share/ irb/), so that all researchers joining such research repository, like ourselves, 
have to abide to these ethical standard in any secondary data analysis, like the current one.

We used CHILDES data to rank words in the order they are learned by most English toddlers. By considering 
the fraction of children producing a certain word in a given month, within each month, words were assigned a 
production probability. Month after month, a rank in descending order of production probability was constructed 
as a proxy for normative learning of most toddlers, as done in previous  studies9,24,66.

Features. This study selected word features shown in previous research to influence early language acquisi-
tion, namely frequency in child-directed  speech24,51, word  length8,66 and  polysemy41. Polysemy scores indicated 
the numbers of meanings relative to a given word in  WordNet67, a proxy to word polysemy successfully used 
in quantitative studies of early word  learning24. Due to the highly-skewed distribution of variables (e.g., Zipf ’s 
law for word  frequency68), we regularised data by recasting it from numerical to categorical, as to avoid biases 
in computing  conformity33. We grouped each variable into discrete bins, fine tuning bin boundaries so as to 
obtain non-empty bins featuring the same order of magnitude of entries. This fine-tuning led to splitting words 
in quintiles for both word frequency and polysemy and in tertiles for length.

Conformity. We characterise the interplay between structure and features through  conformity33, which esti-
mates the mixing patterns of nodes in a feature-rich network, i.e. a categorical node-attributed network. This 
measure can find heterogeneous behaviour among all nodes of a network. Conformity enables a multi-scale 
strategy by leveraging node distances for computing label-similarities between a target node and other nodes. 
A distance damping parameter α is needed for decreasing the impact of label-similarities over longer network 
distances between the target node and its connected neighbors. Based on previous  investigations33, we adopt 
a value of α = 2 giving more emphasis to closer neighbours in a given network topology. See the SI  or33 for a 
formal description of the measure and the motivation behind its choice in this work.

When analysing conformity, we need to test whether the measured values are a trivial consequence of struc-
tural (or attributive) patterns or rather come from a non-trivial interplay between the two. To characterise this, we 
resort to two null models: (i) random re-shuffling the node attribute labels while maintaining network topology 
(Null Model 1, Fig. 1D,25), and (ii) randomly rewiring of links while preserving the node degree and attribute 

https://childes.talkbank.org/
https://talkbank.org/share/irb/
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labels (Null Model 2, Fig. 1D). In other words, let us consider this question: Are two labels at the endpoint of 
an edge significant for the distribution of conformity or can we observe similar patterns by randomly rewiring 
the attributive or structural model components? While rewiring labels or connectivity patterns, respectively, 
we keep the other component fixed. For building Null Model 1, a random label permutation is enough to dis-
rupt correlations between structure and features. For building Null Model 2, we used a configuration  model69 
to obtain a degree preserving graph randomisation, that is, given N nodes and any arbitrary degree sequence 
{ki} = (k1, k2, kN ) , we place ki stubs on each node i in the graph; then we match each stub with another one until 
all stubs are matched. The conformity distributions of the null models in Fig. 1D refer to the average node scores 
from 100 randomised instances of FERMULEX network.

All conformity distributions are analysed through kernel density estimates (KDEs) and ridgelines (Fig. 1D); 
in particular, these last ones get a better picture of mixing heterogeneity between the class labels on the original 
toddlers’ lexicon.

Core: definition and evaluation. For finding a potential language core, we model each word as a vector of 
conformity scores. This results in a vector space where classic clustering algorithms as K-Means70 can be run. We 
reveal a relevant set of words among the six optimal clusters identified by K-Means through the elbow method. 
The SI provides methodological details about this configuration.

A set of several quality functions are proposed to characterise the language core. We focus on modularity, 
conductance, cut ratio, internal edge density, hub dominance and  transitivity71. Modularity, conductance and cut 
ratio focus on the links within and outside a community: They measure how well-separated a cluster is from the 
rest of the network. Edge density, transitivity and hub dominance characterise the internal structure of the core. 
In particular, transitivity and hub dominance characterise it in terms of triadic closure and cliquishness level, i.e. 
the creation of subgraphs where each node is fully connected to others. See the SI for their formal description. 
All in all, these network metrics are used to characterise the structure of the different cores found via conformity 
(in FERMULEX), via core-detection on the network structure  only35 and via K-Modes on feature embeddings 
 only43. Notice that these measures, combined, provide info about the distinctiveness and connectedness of a 
given component/cluster in a network.

Graph walks. We aim to model early word acquisition by progressively combining the network and vector 
components of FERMULEX to achieve this goal, the core idea is to generate a word rank that is progressively 
filled according to the different graph walk strategies, each one incorporating specific assumptions. In this work 
we compare four alternative random walk models each one having a unique rationale on how to weigh links and/
or to determine the set of candidates for the next to-be-learned word. In particular:

• Struct (Graph Walk 1): Words are connected by unweighted links, hence the next word is chosen according 
to the underlying structure only. Similarly, the set of candidates is chosen from the adjacent neighborhood 
of the current word;

• MaxSim (Graph Walk 2): Edges are weighted according to the pairwise similarity between nodes’ features. 
Jaccard similarity is used (cf. SI), and frequency, length and polysemy are all considered. The same strategy 
of Struct is used for the set of candidates;

• ExtCand (Graph Walk 3): The same strategy of MaxSim is used for weighing links; the set of candidates is 
chosen from the adjacent neighborhood of all the words already learned;

• CDI-MaxSim (Graph Walk 4): Links are weighted according to a CDI-based pairwise similarity between the 
attributes of nodes as well as the availability and attractiveness (cf. SI), and it needs to be updated at each 
iteration. The same strategy of Struct and MaxSim is used for the set of candidates.

Struct and MaxSim are biased random walks considering, respectively, topology or similarity between words (i.e., 
the network structure or the vector space) while ExtCand and CDI-MaxSim aim for a more holistic approach.

ExtCand visit strategy is designed to mime non-sequential word learning in children (cf.8), where the word 
acquired at step t + 1 could be similar to any word already learned before, thus enabling an interplay between 
exploration and exploitation of CDIs. When the last word determines the topology of similar candidates for 
the next acquisition step, resembling a Markovian  process66, the walker possesses a bias to remain within the 
same CDI. By considering as to-be-learned candidates all previously learned words, the walker has a chance of 
backtracking and acquiring more words within the CDI sharing tightly similar concepts.

CDI-MaxSim, the CDI-based model relies on pairwise similarity between two words modulated by additional 
information on the filling of CDIs they belong to. For additional details and a formal description of the pairwise 
similarity function adopted refer to the SI.

Graph walk evaluation. Accuracy, precision and recall are used to evaluate the goodness of ranks’ pre-
diction, as commonly done in statistics and machine learning. Accuracy is defined as the number of correct 
predictions, i.e. true positives or TP, divided by the total number of predictions. In this domain, TPs are words 
belonging to a CDI that are learned by a random walker in a specific bin of age of acquisition. Precision is the 
fraction of relevant elements among all the retrieved ones including non-relevant elements, i.e. false positives or 
FP. In this domain, FPs are words that fill a CDI as expected in a particular age of acquisition bin, but they are 
not the exact same words considered in normative learning. For instance, dog might contribute to increase FPs 
because it belongs to the Animals CDI but the normative learning contemplated cat instead of dog. Finally, recall 
is the fraction of relevant elements that are retrieved. Missing relevant elements (false negatives or FNs) are CDI’s 
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words that are not retrieved by a random walker in a particular bin of age of acquisition. The above definitions 
imply that there can be predictions with high recall and low precision, because there are many words that satisfy 
the semantic category roughly represented by the CDI (e.g. guessing as learned names of animals) but different 
from the specific words learned during normative acquisition (e.g. other names of animals). This interplay spans 
from the specific characterisation of random-walk predictions and it is accounted for in the “Results” and “Dis-
cussion” sections. See the SI for a complete formalization of the measures, and toy examples.

Data availibility
All the network layers used for this study were obtained  from24. All word kernels generated during this study are 
included in this published article and its supplementary information files.

Code availability
Conformity code for genrating the word kernels is available on https:// github. com/ Giuli oRoss etti/ confo rmity.
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