
1041-4347 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2872587, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, MONTH YEAR 1

Personalized Market Basket Prediction with
Temporal Annotated Recurring Sequences

Riccardo Guidotti, Giulio Rossetti, Luca Pappalardo, Fosca Giannotti and Dino Pedreschi

Abstract—Nowadays, a hot challenge for supermarket chains is to offer personalized services to their customers. Market basket
prediction, i.e., supplying the customer a shopping list for the next purchase according to her current needs, is one of these services.
Current approaches are not capable of capturing at the same time the different factors influencing the customer’s decision process:
co-occurrence, sequentuality, periodicity and recurrency of the purchased items. To this aim, we define a pattern Temporal Annotated
Recurring Sequence (TARS) able to capture simultaneously and adaptively all these factors. We define the method to extract TARS
and develop a predictor for next basket named TBP (TARS Based Predictor ) that, on top of TARS, is able to understand the level of the
customer’s stocks and recommend the set of most necessary items. By adopting the TBP the supermarket chains could crop tailored
suggestions for each individual customer which in turn could effectively speed up their shopping sessions. A deep experimentation
shows that TARS are able to explain the customer purchase behavior, and that TBP outperforms the state-of-the-art competitors.

Index Terms—Next Basket Prediction, Temporal Recurring Sequences, User-Centric Model, Market Basket Analysis, Data Mining, Interpretable Model.
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1 INTRODUCTION

D ETECTING purchase habits and their evolution in time
is a crucial challenge for effective marketing policies

and engagement strategies. In this context, one of the most
promising facilities retail markets can offer to their cus-
tomers is basket prediction, i.e., the automated forecasting of
the next basket that a customer will purchase. An effective
basket recommender can act as a shopping list reminder
suggesting the items that the customer could probably need.

A successful realization of this application requires an in-
depth knowledge of an individual’s shopping behavior [1].
The purchasing patterns of individuals evolve in time and
can experience changes due to both environmental reasons,
like seasonality of products or retail policies, and personal
reasons, like diet changes or shift in personal preferences.
Thus, a satisfactory solution to basket prediction must be
adaptive to the evolution of a customer’s behavior, the recur-
rence of her purchase patterns, and their periodic changes.

We propose the Temporal Annotated Recurring Sequences
(TARS), adaptive patterns which model an individual’s
purchasing behavior by four main characteristics. First,
TARS consider the co-occurrence: a customer systematically
purchases a set of items together. Secondly, TARS model
the sequentiality of purchases, i.e., the fact that a customer
systematically purchases a set of items after another one.
Third, TARS consider periodicity: a customer can systemat-
ically make a sequential purchase only in specific periods
of the year, because of environmental factors or personal
reasons. Fourth, TARS consider the recurrency of a sequen-
tial purchase during each period, i.e., how frequently that
sequential purchase appears during a customer’s period
of the year. Modeling these four aspects – co-occurrence,
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sequentiality, periodicity and recurrency – is fundamental to
detect an individual’s shopping behavior and its evolution
in time. On one hand, future needs depend on the needs
already satisfied: what a customer will purchase depends on
what she already purchased. On the other hand, the needs of
a customer depend on her specific habits, i.e., recurring pur-
chases she makes over and over. Far from being static, shop-
ping habits are affected by both endogenous and personal
factors [2], [3], [4]. For this reason, periodicity is a crucial
characteristic of an adaptive model for basket prediction.

We exploit the TARS to construct a parameter-free TARS
Based Predictor (TBP) which solves the basket prediction
problem and provides a basket recommendation as a list of
items to be reminded in the next purchase. We demonstrate
the effectiveness of our approach by extracting the TARS
for thousands of customers in three large-scale real-world
datasets. One of the main properties of TARS is their inter-
pretability [5], [6], which allows retail chains to gain useful
insights about the customers’ purchasing patterns. We show
that TARS can be used to infer important characteristics of
products, like seasonality and inter-purchase times, which
can be easily interpreted by both a simple mathematical
notation and a visual representation. Then, we compare
TBP with a repertoire of state-of-the-art methods and show
that: (i) TBP outperforms existing methods, (ii) TBP can
predict up to the next 20 baskets, (iii) the quality of TBP’s
predictions stabilizes after about 36 weeks. TARS and TBP
are user-centric approaches: given a customer, they only use
the customer’s individual data to predict her future baskets
[7], [8], [9], [10]. This aspect eases the customers’ personal
data management and allows for developing tailored recom-
menders that can run on personal mobile devices [11], [12].

In summary, our contributions are the following: (i) we
introduce TARS, a parameter-free algorithm based on trans-
actional data (Section 4); (ii) we develop TBP, a predictor
based on TARS which solves the basket prediction problem
to produce a shopping list reminder (Section 5); (iii) we
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extract TARS from large-scale real-world datasets and show
that they are easily interpretable (Section 6); (iv) we charac-
terize TBP and compare it with state-of-the-art methods on
real datasets (Section 6). The rest of the paper is organized as
follows. Section 2 reviews existing approaches and Section
3 formalizes the problem. Finally, Section 7 concludes the
paper suggesting future research directions1.

2 RELATED WORK

In this section, we review and categorize the related work
on transactional data mining for predictions and recom-
mendations. Next basket prediction is an application of
recommender systems based on implicit feedback where
only positive observations (e.g., purchases or clicks) are
available [14], [15], and no explicit preferences (e.g., ratings)
are expressed [16]. The implicit feedback are given in a form
of sequential transactional data obtained by tracking the
users’ behavior over time [17], e.g. a retail store records the
transactions of customers through fidelity cards.

Next basket prediction is mainly aimed at the construc-
tion of effective recommender systems (or recommenders).
Recommenders can be categorized into general, sequential,
pattern-based, and hybrid recommenders. General recom-
menders are based on collaborative filtering and produce
recommendations for a customer based on general cus-
tomers’ preferences [18], [19]. They do not consider any se-
quential information (i.e., which item is bought after which)
and do not adapt to the customers’ recent purchases. In con-
trast, sequential recommenders are based on Markov chains
and produce recommendations for a customer exploiting
sequential information and recent purchases [20]. Pattern-
based recommenders base predictions on frequent itemsets
extracted from the purchase history of all customers while
discarding sequential information [21], [22], [23]. Pattern-
based approaches frequently exploit or extend the Apriori
algorithm [24] for extracting the patterns.

The hybrid approaches combine the ideas underlying
general and sequential recommenders. In [25] the authors
use personalized transition graphs over Markov chains and
compute the probability that a customer will purchase an
item by using the Bayesian Personalized Ranking opti-
mization criterion [26]. HRM [27] and DREAM [28] exploit
both the general customers’ preferences and the sequential
information by using recurrent neural networks. A different
hybrid approach is described in [29]. This probability model
merges Markov chain and association patterns.

All the approaches described above suffer from sev-
eral limitations. For example, general recommenders and
pattern-based recommenders do not take into account nei-
ther the sequential information (i.e., which item is bought
after which) nor the customers’ recency. In contrast, sequen-
tial recommenders assume the independence of items in the
same basket and do not capture factors like mutual influ-
ence. Furthermore, all the approaches require transactional
data about many customers in order to make a prediction
for a single customer. For this reason, they do not follow
the user-centric vision for data protection as promoted by
the World Economic Forum [7], [8], [30], which incentives

1. This work extends “Market Basket Prediction using User-Centric
Temporal Annotated Recurring Sequences” presented at ICDM’17 [13].

personal data management for every single user of a data-
based service. Cumby et al. [31] propose a predictor which
embraces the user-centric vision by reformulating basket
prediction as a classification problem: they build a distinct
classifier for every customer and perform predictions by re-
lying just on her personal data. Unfortunately, this approach
assumes the independence of items purchased together.
Also in [10] is proposed a personalized basket prediction
model but it only considers co-occurrence and requires part
of the next basket to perform the recommendation.

Finally, the main drawback of the hybrid approaches
based on neural networks [27], [28], [29] is that their pre-
dictive models are difficult to interpret by humans. The
interpretability of a predictive model, i.e., the possibility to
understand the mechanisms underlying the predictions [32],
is highly valuable for a retail chain manager interested in
improving the marketing strategies and the service offered.
Moreover, interpretability is also important to customers for
gaining insights about their personal purchasing behavior.

We propose an interpretable approach to basket predic-
tion compliant with the user-centric vision, i.e., just the data
of a customer are used to make predictions for that customer
[9]. In order to do that we model the interactions among
items in the same basket as well as the interactions between
items in consecutive baskets by considering simultaneously
co-occurrence, sequentiality, periodicity and recurrency.

3 MARKET BASKET PREDICTION PROBLEM

We refer to market basket prediction as the prediction of the
items a customer will purchase in her next transaction. Let
C={c1, . . . , cz} be a set of z customers and I={i1, . . . , iv}
be a set of v items. We indicate with Bc=〈bt1 , bt2 , . . . , btn〉
the ordered purchase history of the baskets (or transactions)
of customer c, where bti⊆I is the basket composition and
ti∈[t1, tn] the transaction time. Finally, B={Bc1 , . . . , Bcz} is
the set of all customers’ purchase histories.

Given the purchase history Bc of customer c and the
time tn+1 of the next transaction, market basket prediction
consists in providing the set b∗ of k items that customer c
will purchase in the next transaction btn+1 .

Our approach to market basket prediction aims at over-
coming the main limitations of existing methods illustrated
in Section 2. To this purpose, we propose a hybrid predictor
which combines ideas underlying sequential and pattern-
based recommenders. The approach consists of two main
components. The first one is the extraction of Temporal
Annotated Recurring Sequences (TARS) from the customer’s
purchase history, i.e., sequential recurring patterns able to
capture the customer’s purchasing habits. The second one
is the TARS Based Predictor (TBP), a predictive method that
exploits the TARS of a customer to forecast her next basket.

4 CAPTURING PURCHASING HABITS

In this section we formalize TARS and describe how to
extract them from the purchase history of a customer.

4.1 Temporal Annotated Recurring Sequences
Temporal Annotated Recurring Sequences (TARS) model two
aspects: (i) the customer’s recurrent and sequential pur-
chases, i.e., the fact that a set of items are typically purchased
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TABLE 1
Example of customer purchase history Bc.

timestamp basket timestamp basket
01-01 a, b, g, h 01-29 a, b, c, g, h
01-05 a, c, d 02-02 b, c, d
01-09 a, b, e, f, h 02-06 a, c, d, e, f, i
01-13 a, b, c, d, h 02-10 b, e, f, h
01-17 c, d, e, f, g 02-14 a, b, c, d, e, f, g, h
01-21 e, f, g 02-22 a, b, g, h, i

together and after another set of items; (ii) the recurrence
of the sequential purchase, i.e., when and how often such
pattern occurs in the customer’s purchase history.

To show how TARS capture these two aspects at the
same time, we define their components and clarify their
meaning with the help of a real-world example, which refers
to a customer’s purchase history reported in Table 1.

Definition 1 (Sequence). Given a customer’s purchase history
Bc = 〈bt1 , . . . , btn〉, we call S = 〈X,Y 〉 = X → Y
a sequence if the pair of itemsets X ⊆ bth and Y ⊆ btl ,
X,Y 6= ∅, th < tl and @ S′ = X ′ → Y ′, X ′ ⊆ X ⊆ bt′h and
Y ′ ⊆ Y ⊆ bt′l such that t′h, t

′
l ∈ (th, tl). X and Y are called the

head and the tail of the sequence, respectively.

We denote with TS = 〈tj1 , . . . , tjm〉 the head time list of S,
i.e., the ordered list of the head’s time of all the occurrences
of S in the customer’s purchase history. The support |TS |
of a sequence S is the size of its head time list. We call
length of a sequence |S| = |X| + |Y | the sum of sizes of
the head and of the tail. We say that a sequence S′ is a
subsequence of S′′, S′ ~⊆ S′′ if X ′ ⊆ X ′′ ∧ Y ′ ⊆ Y ′′. Figure 1
shows the occurrences of sequence S = {a} → {b} for a
customer. We observe that, since by definition it cannot
exist a S′ ⊆ S with t′h, t

′
l ∈ (th, tl), then the first a is not

considered as part of the sequence S, and consequently
is also not considered as part of its head time list, hence
TS = 〈01-05, 01-09, 01-13, 01-29, 02-06, 02-14〉.

Beyond the items in a sequence, there are other two
crucial aspects needed for capturing re-occurrences: the
intra-times between the itemsets X and Y of sequence S
and the inter-times between a re-occurrence of sequence S.

Definition 2 (Intra-Time). We define αh = tl−th as the
intra-time of an occurrence of a sequence S, i.e., the difference
between the time of the head and the time of the tail. We denote
with AS = 〈α1, . . . , αm〉 the ordered intra-time list of all the
occurrences of S in B.

Definition 3 (Inter-Time). Given the head time list TS , we
define δj = thi

− thj
with thi

, thj
∈ TS and thj

< thi
as the

inter-time of a sequence S, i.e., the difference between the times
of the heads of two consecutive occurrences of S. We denote with
∆S = 〈δ1, . . . , δm〉 the ordered inter-time list of S. We impose
δm = αm by construction.

In Figure 1, the intra-time list AS consists of the differences
between the heads and the tails of all the occurrences of S,
hence AS = 〈4, 4, 16, 4, 4, 8〉. The inter-time list ∆S consists
of all differences between the head times of two consecutive
sequences, hence ∆S = 〈4, 4, 16, 8, 8, 8〉. Note that: (i) for
each tj ∈ TS we have that αj ≤ δj , i.e., the intra-time of
a sequence is always lower or equal than its inter-time; (ii)
for S = X → X , we have AS = ∆S .

Fig. 1. Head time list TS , intra-time listAS , inter-time list ∆S and periods
P

(1)
S , P (2)

S of sequence S = {a} → {b}.

Definition 4 (Period). Given a maximum inter-time δmax, a
minimum number of occurrences qmin, the head time list TS and
the inter-time list ∆S of a sequence S, we call period an ordered
time list P (j)

S = 〈th, . . . , tl〉 ⊆ TS such that ∀tw ∈ P (j)
S , δw ≤

δmax, P (j)
S is maximal, i.e., δh−1 > δmax, δl+1 > δmax, and

|P (j)
S | ≥ qmin. We denote with PS = {P (1)

S , . . . , P
(m)
S } the set

of periods of S.

The period of a sequence S captures a temporal inter-
val in which S occurs at least qmin times and the time
between any two occurrences is at most δmax. The support
of a period |P (j)

S | indicates how many times S occurs in
P

(j)
S . Given the previously observed property αj ≤ δj of

intra- and inter-times, for a given δmax in the definition of
period we have that the inter-time also considers the intra-
time. In Figure 1, for δmax=14 and qmin=2 we have two
periods P (1)

S =〈01-05, 01-09〉 and P (2)
S =〈01-29, 02-06, 02-14〉

with support 2 and 3 respectively.

Definition 5 (Recurring Sequence). Let PS = {P (1)
S , . . . ,

P
(m)
S } be a set of periods, we define rec(S) = |PS | as the

recurrence of S, i.e., the number of periods PS in the customer’s
purchase history. Given a minimum number of periods pmin, S is
a recurring sequence if rec(S) ≥ pmin.

In the example of Figure 1, for pmin = 2 we have rec(S) =
2, meaning that S is a recurring sequence.

In summary, we have introduced the following basic
concepts associated with a customer’s purchase history: (i)
a sequence captures items purchased together and after other
items; (ii) the period of a sequence is a time list respecting
intra- and inter-time constraints; (iii) a recurring sequence is
a sequence appearing in a certain number of periods. These
four concepts are the components of a TARS, defined as:

Definition 6 (Temporal Annotated Recurring Sequence).
Given a customer’s purchase history B, a temporally annotated
recurring sequence (TARS) is a quadruple γ = (S, α, p, q),
where S = 〈X,Y 〉 = X → Y is the sequence of itemsets,
α = (α1, α2) ∈ R2

+, α1 ≤ α2 is the temporal annotation, p
is the number of periods in which the sequence recurs, and q is
the median of the number of occurrences in each period2. A
TARS will also be represented as follows:

γ = X
α−−→
p,q

Y

2. We used the median to aggregate the number of occurrences in
each period and as aggregation function in Algorithm 2 in order to
obtain a more reliable representative value. Indeed, the median value
is less subject than the mean to possible outliers and it is a good
representative value also for skewed distributions [33].
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Algorithm 1: extractTars(B)

1 S ← extractBaseSequences(B);
2 {δmaxS }, {qminS }, {pminS } ← parametersEstimation(B,S);
3 S∗ ← sequenceF iltering(B,S, {δmaxS }, {qminS }, {pminS });
4 Ψ← buildTars-Tree(B,S∗, {δmaxS }, {qminS }, {pminS });
5 Γ← extractTarsFromTree(Ψ);
6 return Γ;

A TARS is based on the concept of sequence, S =
〈X,Y 〉 = X → Y , which intuitively indicates that itemset Y
is typically purchased after another itemset X . The itemsets
themselves point out which items are purchased together3.
For example, a sequence {a} → {b, c} indicates that {b, c}
are purchased together after {a}. The temporal annotation
α = (α1, α2) indicates the minimum intra-time α1 and
maximum intra-time α2 of the sequence, i.e., the range of
time elapsing between the purchase of X and the purchase
of Y . A sequence can appear in several distinct periods, i.e.,
time intervals where the sequence occurs continuously. The
number of periods p characterizes these recurrences, that
is, in how many periods the sequence S appears. Finally, q
indicates how many times S typically occurs in a period.

TARS are an evolution of recurring patterns [34] which
model recurrency but not sequentiality and periodicity, and
temporally annotated sequences [35] which model sequen-
tiality and periodicity but not recurrency. TARS, besides co-
occurrence, fills the gaps by modeling all the three aspects.

We refer to Γc={γ1, . . . , γm} as the set of all the TARS of
a customer c. By specifying the maximum inter-time δmax,
the minimum number of occurrences qmin, and the mini-
mum number of periods pmin, we can determine the set Γc
of TARS that can be extracted from the purchase history Bc.

4.2 TARS Extraction Procedure

To extract the TARS from a customer’s purchase history Bc
we use an extension of the well-known FP-Growth algorithm
[36]. Although there are several algorithms that can be used
to solve the same task, we adopt FP-Growth for the following
reasons. First, FP-Growth produces results that are easily
interpretable since it builds an FP-Tree structure, capturing
the frequency at which itemsets occur in the dataset, where
each node represents an item and each branch a different
association. Second, it has been shown in the literature [37],
[38], [39] that FP-Growth can be extended by attaching ad-
ditional information to an FP-tree node in order to calculate
the desired type of pattern. In our approach, we extend the
FP-tree into a TARS-tree. Every node of a TARS-tree stores a
sequence S, the time list TS , its support |TS |, the intra-time
list AS , the inter-time list ∆S and the periods PS derived
from TS with respect to δmax and qmin.

The TARS extraction procedure is described in Algo-
rithm 1. In the first step, it extracts from the purchase

3. We consider only sequences with two itemsets (i.e., X→Y ) and
not with more itemsets (i.e., X→Y→Z) because of two main reasons.
The first one is consequence of the purpose of the definition of TARS:
we want to use them for performing prediction, thus in our modeling
we only need a head and a tail to use for calculating the items’ rank
(see Algorithm 4 for details). The second one is that the recursion of a
sequence p (number of periods in which it occurs) and the occurrences
in each period, try to capture repetitions in the purchasing behavior
that last longer than two purchases even considering seasonal trends.

Algorithm 2: parametersEstimation(S, B)

1 Dδmax ← ∅; Dqmin ← ∅; Dpmin ← ∅;
2 foreach S ∈ S do

Dδmax ← Dδmax ∪ {δ̂S = median(∆S)};
3 Cδmax ← groupSimilar(Dδmax);
4 for Ch ∈ Cδmax do
5 foreach S assignedTo(Ch) do δmaxS ← median(Ch);

6 for S ∈ S do
7 TCS�getT imeCompliantPeriods(S,B, {δmaxS });
8 Dqmin�Dqmin∪{median({q̂S=|TC (j)

S ||TC
(j)
S ∈TCS})};

9 Cqmin ← groupSimilar(Dqmin);
10 for Ch ∈ Cqmin do
11 foreach S assignedTo(Ch) do qminS ← median(Ch);

12 for S ∈ S do
13 PS ← getPeriods(S,B, {δmaxS }, {qminS });
14 wS�

∑
P

(j)
S

∈PS |P (j)
S |;eS�wS/|PS |;Dpmin�Dpmin∪{eS};

15 Cpmin ← groupSimilar(Dpmin);
16 for Ch ∈ Cpmin do
17 for S assignedTo(Ch) do
18 pminS ← median({rec(PS′)=|PS′ |S′assignedTo(Ch)});

19 return {δmaxS }, {qminS }, {pminS };

history B the base sequences S , i.e., the sequences of
length 2 (line 1). Then, it estimates a set of parameters
{δmaxS }, {qminS }, {pminS } for each base sequence S ∈ S with
respect to B (line 2). The base sequences S are then filtered
with respect to these parameters and the base recurring
sequences S∗ are extracted, while the other base sequences
are discarded to reduce the search space (line 3). Finally, the
TARS-tree Ψ is built on the base recurring sequences S∗ (line
4), and the set Γ of TARS annotated with α, p, q is extracted
from Ψ (line 5) according to FP-Growth.

In Section 6.5.2 we will show that the TARS procedure
overcomes the state-of-the-art in time. With respect to com-
putational complexity the dominant part is the construction
of the TARS-tree Ψ (line 4 of Alg. 1) that is implemented
with FP-Growth. Therefore, since FP-Growth is an output-
sensitive algorithm [40], the complexity of extractTars(·)
depends not only on the input B but more likely on its
output Γ. Regarding the memory consumption, the TARS-
tree construction related to FP-Growth is again the domi-
nant part. Besides being easily extensible, in the literature
it has been shown that FP-Growth [36] is more efficient
than other existing frequent pattern mining algorithms (like
Apriori [24]) both in time and space. In [36] is discussed how
memory consumption in not a concern when the datasets
analyzed are not huge: this is the case of the application
of TARS in which the dataset refers to a single individual
and it is consequently limited. Moreover, if problems should
occur, in [41] is shown how to reduce FP-Growth memory
consumption by about an order of magnitude.

4.2.1 Data-Driven Parameters Estimation
In order to make the parameters δmax, qmin, pmin adaptive
not only to the individual customer [42], but also to the
sequences in Bc, we apply two pre-processing steps on the
base sequences S (lines 1–2 Algorithm 1).
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The first pre-processing step is the data-driven esti-
mation of the sets of parameters {δmaxS }, {qminS }, {pminS }
described in Algorithm 2. Let S be the set of base sequences
and δ̂S be the median of inter-times in ∆S (Algorithm 2,
line 2). Given a base sequence S, we estimate parameter
δmax as follows: (i) we group the base sequences with
similar inter-times δ̂S (line 3) obtaining a set of clusters
Cδmax={C1, . . . , Cv}; (ii) if S ∈ Ch, Ch ∈ Cδmax , we set δmaxS

as the median of the δ̂S values in cluster Ch (lines 4–5).
Then, we calculate the periods TCS compliant only with

the temporal constraint δmaxS (lines 6–8) and we estimate
{qminS }: (i) we group the base sequences with similar median
number of occurrences per period q̂S , producing a set of
clusters Cqmin={C1, . . . , Cg} (line 9); (ii) if S∈Ch, Ch∈Cqmin

we set qminS as the median of the q̂S in Ch (lines 10–11).
Similarly, we estimate {pminS } as follows: (i) we compute

the sum of the number of occurrences of a base sequence
in the periods wS and we calculate the expected number of
occurrences per period eS as wS/|PS | (lines 12–14); (ii) we
group the base sequences with similar eS producing a set of
clusters Cpmin = {C1, . . . , Cd} (line 15); and (iii) if S ∈ Ch,
Ch ∈ Cpmin , we set pminS as the median of the number of
periods of the base sequences in Ch (lines 16–17).

We group the base sequences, groupSimilar(·) in Algo-
rithm 2, by dividing the values into equal-sized bins [43].
Each bin corresponds to a group containing similar values4.

4.2.2 Sequence Filtering
The second pre-processing step consists in selecting the base
recurring sequences, i.e., the base sequences satisfying the
sets of parameters {δmaxS }, {qminS }, {pminS }. We apply this
filtering to reduce the search space so that the building of the
TARS-tree and the TARS extraction (lines 4–5 Algorithm 1)
are employed only on the super-sequences of the base
recurring sequences5. In other words, if S1 is not a base
recurring sequence and S1 ⊆ S2, then we assume as a
heuristic that S2 is not recurring too, and we eliminate it
through sequence filtering process. We adopt the sequence
filtering heuristic for reducing the search space because the
antimonotonic property [46] does not apply to TARS.

Consider S1 = {c} → {c} and S2 = {c, d} → {c}
in the example of Table 1, we have that S1

~⊆ S2. Given
δmax = 14, qmin = 2 and pmin = 2, we have rec(S1) = 1
and rec(S2) = 2. Hence, S2 is recurrent while S1 is not,
and the anti-monotonic property is not satisfied. However,
it is clear from this example that a TARS like S1 could be
useful for the prediction because, despite rec(S1) = 1 in
total it occurs six times |P (1)

S1
| = 6. In real-world, {c} could

be a fresh product (like milk or salad) that is repeatedly and
frequently purchased. Hence, an imposed parameter setting
could be not appropriate because (i) it could remove too
many TARS which are in fact useful for the prediction; (ii)
it could consider too many valid base sequences and not
prune enough the search space.

4. The number of bins is estimated as the maximum between the bins
suggested by the Sturges [44] and the Freedman-Diaconis methods [45].

5. We point out that, with respect to the final application of TARS, we
do not known if the patterns discarded by sequence filtering and by FP-
Growth using the sets of parameters {δmaxS }, {qminS }, {pminS } could be
potentially useful for the prediction. However, without a filtering of the
search space TARS extraction would becomes practically intractable.

Algorithm 3: getActiveTARS(B, tn+1,Γ)

1 Γ̂← ∅; Q← ∅; L← ∅; Υ← Γ;
2 for btj , btj−1 ∈ sort-desc(B) do
3 αj−1 ← tj − tj−1;
4 for X ⊆ btj−1 do
5 for Y ⊆ btj do
6 if ∃ γ ∈ Υ | γ = (S, α, p, q) ∧

α1 ≤ αj−1 ≤ α2 ∧ S = 〈X,Y 〉 = X → Y
then

7 if γ ∈ Γ̂ then
8 Qγ ← Qγ + 1; Lγ ← tj−1;
9 if Qγ > q then Γ̂← Γ̂/{γ};

Υ← Υ/{γ};
10 if Lγ − tj−1>q · (α1-α2) then

Υ← Υ/{γ};
11 else
12 Γ̂← Γ̂ ∪ {γ}; Qγ ← 1; Lγ ← tj−1;

13 if Υ = ∅ then return Γ̂, Q;

14 return Γ̂, Q;

For these reasons, we developed the pre-processing steps
for parameters estimation described in this section.

5 TARS BASED PREDICTOR

On top of the set Γc of TARS extracted from a customer’s
purchase history Bc we build the TARS Based Predictor
(TBP), an approach for market basket prediction that is
markedly personalized and user-centric [7], [8]: the predictions
for a customer c are performed using only the model build
on her purchase history Bc, i.e., her TARS Γc.

TBP exploits TARS to simultaneously embed complex
item interactions such as co-occurrence (which item is bought
with which), sequential relationship (which items are bought
after which), periodicity (which item is bought when) and
typical times of re-purchase (after when re-purchases hap-
pen). These factors enable TBP to observe the customer’s
recent purchase history and understand which are the active
patterns, i.e., the purchasing patterns that the customer is
currently following. In turn, by knowing the active patterns,
TBP can provide the items that the customer will need at
the time of the next purchase. It is worth noting that TBP is
parameter-free: all the parameters of the TARS model Γc are
automatically estimated for each customer on her personal
data Bc, avoiding the usual case where the same parameter
setting is used indiscriminately for all the customers [42].

Given the purchase history Bc of customer c, the time
tn+1 of c’s next transaction, and c’s TARS set Γc, TBP works
in two steps. First, it selects the set Γ̂c of active TARS. Second,
it computes a score Ωci for every item i belonging to an
active TARS in Γ̂c, ranks the items according to Ωci , and
selects the top k items as the basket prediction for c.

Algorithm 3 shows TBP’s procedure to select the active
TARS Γ̂ of a customer. First, it sorts the purchase history
B from the most recent basket to the oldest one, then it
loops on pairs of consecutive baskets (line 2) searching
for a set Υ of potentially active TARS (lines 4–7). When it
finds a potentially active TARS γ, it considers two cases. If
the sequence S of γ is encountered for the first time, the
algorithm adds γ to the set Γ̂ of active TARS and initializes
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Algorithm 4: calculateItemScore(B, Γ̂, Q)

1 Ω← ∅; foreach i ∈ I do Ωi ← 0;
2 for γ = (S = 〈X,Y 〉, α, p, q) ∈ Γ̂ do
3 foreach i ∈ Y do Ωi ← Ωi + (q −Qγ);

4 for i ∈ {i | ∃ γ = (S = 〈X,Y 〉, α, p, q) ∈ Γ̂, i ∈ Y } do
5 Ωi ← Ωi + sup(i)

6 return Ω;

two variables: the number of times γ has been encountered
Qγ and its last starting time Lγ (line 13). In the second
case, the algorithm increments Qγ and updates Lγ (line 9).
If Qγ > q the algorithm removes γ from the set of active
TARS and from the set of potentially active TARS (line 9).
If too much time has passed between the last beginning of
TARS γ and its next occurrence (line 11), the algorithm does
not look for that TARS γ anymore and removes it from Υ.
Algorithm 3 stops either when the set of potentially active
TARS is empty (line 14), or when the entire purchase history
B has been scanned (line 15). Finally, it returns the set Γ̂ of
active TARS and the number of times Q the sequences of the
active TARS have occurred in the last period.

Algorithm 4 shows the procedure of TBP to compute
the items’ scores. First, it sets to zero the score of each item
Ωi (line 1). Then, for every active TARS γ containing item
i∈Y , it increases Ωi with the difference between the typical
number of occurrences q of γ and Qγ indicating the number
of times that the sequence of γ occurred in the recent history
(lines 2–3). Finally, Ωi is augmented with the support of
item i for the items in the tail of the active TARS (lines 4–5).
In other words, each item in the consequent of an active
TARS gets an higher score Ωi if the TARS it belongs to is
going to be repeated in its recurring period. The overall
importance of an item i for a customer c is also considered
augmenting the score with its support. Therefore, intuitively
Ωi is high if i is going to be re-purchased as consequence of
previous purchases in the next shopping session. After this
procedure, TBP ranks the items’ scores Ωc in descending
order and returns the top-k items as prediction.

6 EXPERIMENTS ON RETAIL DATA

In this section we report the experiments performed on three
real-world datasets to show the properties of the TARS and
the effectiveness of TBP in market basket prediction6. We
also highlight an important property of TARS, i.e., their
interpretability, showing how crucial aspects like seasonality
and inter-purchase times can be easily inferred from TARS.

6.1 Experimental Settings
State-of-the-art methods [25], [27], [28], [31] fix the size of
the predicted basket to k = 5 or k = 10. However, we think
that the size k of the predicted basket should adapt to the
customer’s personal behavior.

6. We provide at https://github.com/GiulioRossetti/tbp-next-basket
the Python code of TBP and of the baseline methods with open source
datasets and an anonymized sample of the private Coop dataset.TARS
and TBP code is also indexed within the SoBigData resource catalogue
https://goo.gl/N6UhnM. We also provide details about the parameter
setting used for the different methods if not specified in the paper. The
code of DRM was kindly provided by the authors of [28].

Indeed, if a customer typically purchases baskets with
a few items it is useless to predict a basket with a large
number of items. On the other hand, if a customer typically
purchases baskets with a large number of items, the pre-
diction of a small basket will not cover most of the items
purchased. In this paper, we report the evaluation of the
predictions made using both a fixed length k ∈ [2, 20] for
all the customers and using a customer-specific size k = k∗c ,
where k∗c indicates the average basket length of customer c.

According to the literature [25], [27], [28], [31], we
adopt a leave-one-out strategy for model validation: for each
customer c we use the baskets in the purchase history
Bc = {bt1 , . . . , btn} for extracting the TARS, and the basket
btn+1 to test the performance. For each customer, we evalu-
ate the agreement of the predicted b∗ and the real basket b
using the following metrics:

• F1-score, harmonic mean of precision and recall [47]:

F1-score(b, b∗) =
2 · Precision(b, b∗) ·Recall(b, b∗)
Precision(b, b∗) +Recall(b, b∗)

Precision(b, b∗) = |b ∩ b∗|/|b∗|

Recall(b, b∗) = |b ∩ b∗|/|b|

• Hit-Ratio, the ratio of customers who received at least
one correct prediction (a hit) [48]:

Hit-Ratio(b, b∗) = 1 if b ∩ b∗ 6= ∅, 0 otherwise.

• normalized F1-score: the F1-score calculated only for
the customers having at least one hit.

Furthermore, for each customer we compute both learn-
ing and prediction time. The learning time is the amount of
time required to extract the model. The prediction time is the
amount of time the predictor needs to predict the next bas-
ket of a customer. We perform the experiments on Ubuntu
16.04.1 LTS 64 bit, 32 GB RAM, 3.30GHz Intel Core i7.

According to the literature, we report the evaluation
metrics by aggregating the quality measures calculated for
each customer by using mean, median and percentiles.

It is important to notice that, due to the nature of our
problem formulation, and in line with [31], we do not adopt
measures of ranking quality like NDCG and DCG [49]. Such
choice is supported by three motivations.

First, since we are dealing with retail transactions we do
not have a rating provided by the customers for each item
purchased, i.e., an explicit feedback like the voting assigned
to movies, songs, restaurants, hotels, etc., that can be used
as ground truth for the ranking measures.

Second, we can not use implicit feedback like the indi-
vidual (or collective) purchase frequency because this would
mean to assume that every user would prefer to have in
her recommendation the items most frequently purchased
– rather than items that are easily forgettable because not
very frequent or subjected to seasonality: ranking measures
assume that very important items are more useful when
appearing earlier in the result list.

Finally, in the market basket prediction problem formu-
lation, both the predicted b∗ and the real basket b are set
without any order among their items.

https://github.com/GiulioRossetti/tbp-next-basket
https://goo.gl/N6UhnM
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TABLE 2
Statistics of the datasets used in the experiments.

Dataset cust. # baskets # items avg basket
per cust.

avg basket
length

Coop-A 10,000 7,407,056 4,594 432.4±353.4 9.4±5.8
Coop-C 10,000 7,407,056 407 432.4±353.4 8.6±4.9
Ta-Feng 2,319 24,304 5,117 10.4±7.5 1.8±1.1

6.2 Datasets

We performed our experiments on three real-world transac-
tional datasets: Coop-A, Coop-C (both extracted from the pri-
vate Coop repository) and the open source Ta-Feng dataset.
Table 2 shows the details of the datasets.

The Coop repository is provided by Unicoop Tirreno7,
a big retail supermarket chain in Italy. It stores 7,407,056
transactions made by 10,000 customers in 23 different shops
in the province of Leghorn, over the years 2007-2014. The
set of Coop items includes food, household, wellness, and
multimedia items. There are 7,690 different articles classified
into 520 market categories. From the repository, we extract
two datasets: Coop-A and Coop-C. The two datasets differ in
the items categorization. In Coop-A (articles) the items of a
basket are labeled with a fine-grained categorization which
distinguishes, for example, between blood orange and navel
orange. In Coop-C (categories) the items are mapped to a
more general category: in the example above blood orange
and navel orange are considered the same generic item
(orange). All the customers in Coop-A and Coop-C have at
least one purchase per month.

Ta-Feng8 is a dataset covering covers food, stationery
and furniture, with a total of 23,812 different items. It con-
tains 817,741 transactions made by 32,266 customers over 4
months. We remove customers with less than 10 baskets and
we consider only the remaining 7% customers.

Since we run experiments on retail data we adopt the day
as time unit: both the parameters and the TARS annotations
are expressed in days.

6.3 Interpretability of TARS

The interpretability of TARS is one of the main characteris-
tics of our approach. Table 3 shows some examples of TARS
extracted from Coop-C. In the table, we report the median
of α, p and q across all the customers having the presented
TARS. We observe that TARS with a recurring base sequence
are the most supported among the customers.

For example {milk} → {milk} and {banana} →
{banana} are supported by more than 90% of the customers
in Coop-C. The two TARS have similar q (6.58 and 7.20
respectively) indicating that they have similar recurrence
degrees, i.e., they occur a similar number of times in the
respective periods. In contrast {banana} → {banana} has a
higher maximum intra-time (α2 = 35) and a lower average
number of recurrences (p = 14.63). This indicates that: (i)
the time for a banana re-purchase is higher than the time of
a milk re-purchase; (ii) the support to have a distinct period
is higher for {banana} than {milk}.

7. https://www.unicooptirreno.it/
8. http://www.bigdatalab.ac.cn/benchmark/bm/dd?data=Ta-Feng

TABLE 3
Examples of TARS extracted from Coop-C.

- Supported by more than 90% customers

{milk} (1,17)−−−−−−→
18.87,6.58

{milk} {banana} (2,35)−−−−−−→
14.63,7.20

{banana}

- Supported by more than 80% customers

{tomato} (1,17)−−−−−−→
13.87,6.58

{milk} {tomato} (1,12)−−−−−−→
15.27,5.11

{bovine}

- Supported by more than 25% customers{bread,
potato

} [2,15]−−−−−−→
11.40,8.15

{bovine}
{bread,

potato
} [3,27]−−−−−→

7.25,4.30

{banana,
potato

}

TABLE 4
Periods of TARS with different recurring base sequences from Coop-C.

For each TARS is shown how the periods, represented as horizontal
single lines, occur along 7 years of observations.

X → X α1 α2 p q
{banana} → {banana} 2 35 14.63 7.20
{apple} → {apple} 2 35 15.90 6.14
{orange} → {orange} 2 33 8.13 6.56
{ice cream} → {ice cream} 2 40 5.90 6.38
{strawberry} → {strawberry} 2 32 3.55 4.69
{easter egg} → {easter egg} 4 20 2.42 3.29

Moreover, we notice for more than 25% of the customers
the contemporary purchase {bread, tomato} can indicate
a future basket with {bovine} or with {banana, potato}
and that these TARS have very different annotations α, p, q.
Finally, we highlight that, even if the most common TARS
among the customers are those with base sequences, the
TARS in Γc with sequence length greater than two are on
average more than the 95% for each customer.

For better understanding the TARS, in Table 4 we show
some TARS made of base recurring sequences with different
peculiarities. A base recurring sequence captures the typical
repurchasing of the same item within a certain period for a
certain number of times.

Apples and bananas are fruit items available through-
out all the year. The associated base TARS {banana} →
{banana} and {apple} → {apple} have indeed a similar
number of periods p and number of typical occurrences in
each period q.

In contrast, oranges are a seasonal fruit item, generally
available between November and February. The associated
base TARS {orange} → {orange} has a recurrence p signifi-
cantly lower than the recurrence of banana and apple TARS,
while the occurrence inside a period is similar. We observe
that ice creams are similar to oranges: the associated TARS
{ice cream} → {ice cream} has a lower p and a higher
maximum intra-time α2.
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Fig. 2. Evaluation of TARS temporal validity with respect of F1-score
(left) and Hit-Ratio (right) on Coop-C varying the number k of items.

Finally, Strawberries and Easter eggs are items available
for just a short period of the year. As result, in the as-
sociated TARS we have lower values of both p and q
than the other TARS. In particular, among the items con-
sidered strawberries’ TARS have the lowest α2 indicat-
ing short periods, while Easter eggs have the highest α1

indicating long intra-times.

6.4 Properties of TBP
In this section, we present the peculiar properties of TBP:
the temporal validity and reliability of the TARS extracted,
and the performance improvements yield by parameters
estimation. Since these experiments are closely tied to the
applicability of TBP in real services, we report the results
obtained on Coop dataset where the period of observation (7
years) is much more statistically significant than Ta-Feng.

6.4.1 TARS Temporal Validity
In real-world applications is unpractical, or even unnec-
essary, to rebuild a predictive model from scratch every
time a new basket appears in a customer’s purchase history.
This leads to the following question: for how long are TBP
predictions reliable? We address this question by extracting
TARS on the 70% of the purchase history of every customer
and performing the prediction on the subsequent baskets.

As shown in Figure 2, regardless the predicted basket
size k, F1-score and Hit-Ratio remain stable up to 20 predic-
tions, which suggests a large temporal validity of TBP since
the model construction.

6.4.2 TARS Extraction Reliability
How many baskets does TBP need to perform reliable
predictions? For each customer, we start from her second
week of purchases and we extract the TARS incrementally
by extending the training set one week at a time. We then
predict the next basket of the customer and we evaluate the
performance of TBP in this scenario.

Figure 3 shows the median value and the “variance”
(by means of the 10th, 25th, 75th and 90th percentiles) of
the F1-score, (top-left), the total number of different items
purchased by the customer (top-right), the number of TARS
extracted (bottom-left), the number of active TARS during
the prediction (bottom-right) as the number of weeks used
in the learning phase increases. The average F1-score does
not change significantly as the number of weeks increases,
while its “variance” reduces as more weeks are used in the
learning phase. Differently, the other measures stabilize after
an initial setup phase. Thus, this experiment underlines that
TBP needs at least 9-12 months of data to produce reliable
performances as well as sound, stable, TARS.

Fig. 3. Evaluation of TARS reliability on Coop-C observing F1-score
(top left), number of items (top right), number of TARS (bottom left)
and number of active TARS (bottom right) by augmenting the size of
the purchase history Bc for each customer analyzed. In the plots, the
median value (the red line) is shown together with the lower and upper
quartiles of the distribution.

Fig. 4. Number of TARS per customer distribution on Coop-C:
parameter-free (left) versus parameter-fixed (right) TARS extraction. The
bottom line reports a focus of the distributions of the base TARS, i.e.,
TARS with length equals to 2.

6.4.3 Parameter-Free vs. Parameter-Fixed

TARS can be extracted by fixing the same parameters for all
the customers and items, as usually done by state-of-the-art
methods [25], [27], [28], [31], or by automatically estimating
the parameters with a data driven procedure.

In this section we discuss and analyze the impact of fix-
ing the parameters on the predictive performance by com-
paring the results of parameter-free TBP and a parameter-
fixed version of TBP where we set δmax=14 (e.g., two
weeks), qmin=3 and pmin=2.

Figure 4 shows the distributions of the number of TARS
per customer for the parameter-free (left) and parameter-
fixed (right) scenarios. We observe two different distribu-
tions: a skewed peaked distribution for the parameter-free
scenario and a heavy tail distribution for the parameter-
fixed scenario. This suggests that fixing the parameters has a
strong impact on the extraction of TARS, leading to a lower
average number of TARS per customer than the parameter-
free scenario (Figure 4).

Figure 5 compares the predictive performances of the
parameter-free and the parameter-fixed scenarios. For both
F1-score and Hit-Ratio, TBP produces better predictions in
the parameter-free scenario. In particular, when using the
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Fig. 5. Next basket prediction performance on Coop-C observing F1-
score (left) and Hit-Ratio (right) comparing the parameter-free proposed
approach versus the same approach with the parameters fixed.

average basket size of a customer k∗c as the size of the pre-
dicted basket, the parameter-free approach has F1-score =
0.25 while the parameter-fixed approach has F1-score=0.21.
Our results suggest that the adoption of a parameter-free
strategy during the extraction of TARS enforces customer
behavior heterogeneity and increases prediction accuracy.

6.5 Comparison with Baseline Methods
We compare TBP with several baseline methods on Coop-A,
Coop-B and Ta-Feng datasets.

6.5.1 Baseline Methods
We implemented the following user-centric state-of-the-art
methods. We recall that these approaches build the predic-
tive model of a customer relying only on her purchase data.

LST [31]: the next basket predicted is the last basket
purchased by the customer, i.e., btn+1 = btn ;

TOP [31]: predicts the top-k most frequent items with
respect to their appearance, i.e., number of times that are
purchased, in the customer’s purchase history Bc;

MC [31]: makes the prediction based on the last purchase
btn and on a Markov chain calculated on Bc;

CLF [31]: for each item i purchased by the customer,
this method builds a classifier on temporal features ex-
tracted from the customer’s purchase history considering
two classes: “item i purchased yes/no”. The classifier then
predicts the next basket using the temporal features ex-
tracted from the customer’s purchase history. Examples of
the features extracted from a basket btj are: the number of
days at tj since item i was bought by c, the frequency of
purchasing i at time tj , etc.

We also implemented four state-of-the-art methods that
are not user-centric, i.e, they require and use purchase data
of all customers B to build a collective predictive model:

NMF (Non-negative Matrix Factorization) [50]: is a collabo-
rative filtering method which applies a non-negative matrix
factorization over the customers-items matrix. The matrix is
constructed from the purchase history of all customers B;

FMC (Factorizing personalized Markov Chain) [25]: using
the purchase history of all the customers B, it combines
personalized Markov chains with matrix factorization in
order to predict the next basket;

HRM (Hierarchical Representation Model) [27]: employs a
two-layer structure to construct a hybrid representation over
customers and items purchase history B from last transac-
tions: the first layer represents the transactions by aggregat-
ing item vectors from the last transactions, while the second
layer realizes the hybrid representation by aggregating the
user’s vectors and the transactions representations.

DRM (Dynamic Recurrent basket Model) [28]: it is based on
recurrent neural network and can capture both sequential
features from all the baskets of a customer, and global se-
quential features from all the baskets of all the customers B.

Theoretically, user-centric methods should perform bet-
ter than not user-centric methods in solving the market
basket prediction problem. Indeed, a user-centric method
which is fit on the particular behavior of a customer should
be advantaged and should not suffer from the noise gen-
erated by the collective shopping behavior. However, not
user-centric methods, by exploiting the similarity among
various customers, can predict items that a customers has
never bought before, and can be employed also for new
customers just after one purchase. On the contrary, a user-
centric method require a minimum number of purchases in
order to provide a reliable prediction.

We do not compare against the methods described
in [21], [22], [29] because, even though they employ
patterns for producing recommendations, they are de-
signed for web-based services, and because they specifi-
cally exploit and use the items’ ratings and not only the
occurrences of the items in a basket.

With respect to the not user-centric baseline methods
– NMF, FMC, HRM, DRM – we performed preliminary
experiments for each dataset in order to tune the dimen-
sionality d used to represent the data. In line with [27], [28],
for Ta-feng we set d=200 where all the baselines show the
best performance. For Coop-A and Coop-C, as consequence
of empirical experiments, we set d=100 where there is a
good balance between the quality of the performance and
the learning time. Indeed, we underline that, probably as
consequence of both the 7 years of transactions in Coop
against the four months of Ta-feng, and of the higher density
of Coop dataset, for HRM and DRM we report the results of
the test performed on a sample of Coop with 100 customers
due to large computational time (see Table 6).

6.5.2 Market Basket Prediction Evaluation
Table 5 reports the average F1-score and Hit-Ratio of TBP
against the baseline methods when setting the length of
the predicted basket equals to the average basket length for
each prediction of each individual customer, i.e., k=k∗c . This
kind of evaluation is markedly user-centric and would be
a suitable approach in implementing a real personalized
basket recommender tailored on the customer behavior.
TBP outperforms the baselines both in terms of F1-score
and Hit-Ratio and, together with the others user-centric
approaches, it outlines how for this particular task a user-
centric model is more accurate than a not user-centric one.

TABLE 5
F1-score (F1) and Hit-Ratio (HR) using personalized length k = k∗c . In
bold, and bold-italic are highlighted the 1st and 2nd best performer.

k = k∗c TBP TOP MC CLF LST NMF FPM HRM DRM

F
1

Coop-A .17 .14 .14 .13 .09 .14 .08 .06 .05
Coop-C .24 .22 .23 .19 .14 .22 .16 .08 .12
Ta-Feng .09 .09 .06 .09 .06 .08 .08 .08 .07

H
R

Coop-A .62 .58 .58 .56 .40 .59 .44 .35 .33
Coop-C .72 .71 .70 .65 .50 .71 .61 .38 .55
Ta-Feng .32 .34 .24 .31 .15 .31 .31 .31 .29
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Fig. 6. Performance comparison of TBP against the baselines varying length k: F1-score in the top row, Hit-ratio in the bottom row.

To support such findings, the reported results were tested
for their statistically significance applying a Friedman test
with Bonferroni-Dunn post-hoc evaluation [51]. The test
was rejected for both Hit-Ratio and F1-score values with
a p-value of 0.05, thus implying that the compared meth-
ods do actually behave differently when tested on multi-
ple datasets. Conversely, the post-hoc underlined that TBP
significantly outperforms the global approaches under the
same confidence interval, and only LST with p-value 0.1.

In Table 6 we report the learning time, i.e., the time
needed to build every method. Note that (i) it is expressed in
seconds (s) or in hours (h); (ii) for user-centric methods (TBP,
MC, CLF) we report the average time per customer while for
not user-centric methods (NMF, FPM, FRM, DRM) the total
time; (iii) HRM and DRM are tested on a sample∗ of Coop;
(iv) learning time for TOP and LST is always lower than 0.01
seconds. We do not report the prediction time because it is
negligible for all the approaches (i.e., less than 0.01 seconds).

We observe that TBP needs more time than existing user-
centric methods (5 minutes per customer on average) but, if
a prediction is required only for a customer, it is much faster
than the not user-centric approaches that require learning
the model for all the customers. We believe that such a
learning time is acceptable for two reasons: (i) in a real
scenario the TARS can be re-computed once every month
and still produce reliable predictions; (ii) the computation
can be parallelized and personalized with respect to the
customer’s behavior, thus the TARS of all the customers can
be extracted at the same time by different devices.

To better understand how the performance are affected
by the variation of the predicted basket length k, in Figure 6
we compare the average F1-score (top row) and the average
Hit-Ratio (bottom right) produced by TBP and by all the
baseline methods while varying k ∈ [2, 20].

TABLE 6
Learning time comparison. The learning time for TOP and LST is not
reported in the Table because it is always lower than 0.01 seconds.

∗Test carried on a sample of 100 customers.

Dataset TBP MC CLF NMF FPM HRM DRM
Coop-A 351.86s 0.04s 2.38s 244.28s 0.21h 0.84h∗ 47.53h∗
Coop-C 6.62s 0.01s 1.08s 69.98s 0.11h 0.72h∗ 34.06h∗
Ta-Feng 0.01s 0.00s 0.00s 803.89s 0.41h 0.34h 4.24h

Fig. 7. Normalized F1-score varying predicted basket length k.

We observe that TBP considerably overtakes the baseline
methods on Coop-A and Coop-B having the highest F1-score
and a comparable and competitive Hit-Ratio.

On Ta-Feng TBP has the highest F1-score at the second
highest Hit-Ratio. The decrease of the Hit-Ratio of TBP in
Ta-Feng is probably due to the very high data sparsity of the
dataset. Indeed, as we observe in Table 2, Ta-Feng has a much
lower average number of baskets per customer, a much
lower average basket length, and a shorter observation
period than Coop-A and Coop-C. For this reason, the TARS
extracted from Ta-Feng have lower quality than the TARS
extracted on the other datasets.

Finally, we underline that a high F1-score, which consid-
ers simultaneously precision and recall, is a better indicator
than a high Hit-Ratio that only signals that at least an item
predicted is correct. Thus, the improvement of the perfor-
mance for market basket prediction of TBP with respect to
the state of the art are not negligible either using a personal
k = k∗c or if a fixed k is specified for every customer.

Moreover, we notice that the F1-scores can be biased by
two extreme scenarios: (i) the F1-score can be low because
of a low Hit-Ratio, i.e., for most of the customers no item is
predicted even though for some customers we predict most
of the items; (ii) the F1-score can be high because for most
of the customers just one item is predicted.

Thus, in Figure 7 we show the performance using the
normalized F1-score instead of the F1-score. We observe that
the positive gap between TBP and the competitors increases:
for the customers for which TBP correctly predicts at least
one future basket, the baskets predicted by TBP are more
accurate and cover a larger number of items than the baskets
predicted by the other methods.
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Fig. 8. Performance comparison varying k and using a model built on a
subset of Bc with random size between 70% and 90% of |Bc|: F1-score
in the top row, Hit-ratio in the bottom row.

We also investigate to what extent the performances can
be affected by the leave-one-out evaluation strategy: the last
basket of a customer could depart from her typical behavior
affecting the extraction of the TARS.

To cope with this issue we perform the learning pro-
cess (i.e., extract TARS) by selecting a random subset
B′c = {bt1 , . . . , btn′} of the customers’ purchase history
Bc = {bt1 , . . . , btn}, with tn′ < tn. We randomly vary the
size of the subset |B′c| among 70% and 90% of |Bc|, and we
apply TBP on the subsequent basket btn′+1

.
Figure 8 presents the results of this experiment for Coop-

A and Coop-C and confirms the trends observed in the previ-
ous experiments: the leave-one-out evaluation strategy does
not affect significantly the performance of the methods.

7 CONCLUSIONS

In this work, we have proposed a data-driven, interpretable
and user-centric approach for market basket prediction.
We have defined Temporal Annotated Recurring Sequences
(TARS) and used them to construct a TARS Based Predic-
tor (TBP) for next basket forecasting. Being parameter-free,
TBP leverages the specificity of the customers’ behavior to
adjust the way TARS are extracted, thus producing more
personalized patterns. We have performed experiments on
real-world datasets showing that TBP outperforms state-of-
the-art methods. Equally important, we have shown that the
extraction of TARS provides valuable interpretable patterns
that can be used to gather insights on both the customers’
purchasing behaviors and products’ properties like season-
ality and inter-purchase times. Our results demonstrate that
at least 36 weeks of a customer’s purchase behavior are
needed to effectively predict her future baskets. In this
scenario, TBP can effectively predict the subsequent twenty
future baskets with remarkable accuracy.

Our approach could be adopted by retail market chains
to implement an efficient personal cart assistant for remind-
ing to the customers the products that they actually need.
Being parameter-free and user-centric, the application could
potentially run on private devices or data stores [12],
guaranteeing in this way the privacy by design property
[52]. Another interesting application for studying consumer
behavior is related to detecting the churn from personal
purchasing patterns. They can be detected by finding the
TARS which are never active during prediction phases.

It is worth highlighting that, being fully user-centric,
our approach does not allow the prediction of items that
were never bought by a customer, affecting the performance
of our predictor for customers having a short purchase
history. This regards the so-called cold start problem, which
is common to all recommender systems and refers to the
fact that if few or no purchases are available for an item the
quality of resulting recommendations is poor [53]. In our
case, the cold start problem affects predictions in the first
36 weeks of a user’s purchase history, i.e., the time needed
for the number of distinct items bought by a customer to
stabilize (see Figure 3, top right). A strategy to mitigate the
cold start problem related to the user-centric approach could
be to build a hybrid approach [54] where we combine TBP
with collaborative filtering, allowing us to make predictions
for items that are not present in a user’s previous baskets.

A future line of research consists of providing to the
customers of a living laboratory [12] an app running TBP
and observe whether their purchase behaviors are influ-
enced by the recommendations. Furthermore, we would like
to exploit TARS for developing analytical services in other
domains, such as mobility data, musical listening sessions
and health data. Finally, in line with [55], it would be
interesting to study if there is an improvement in the quality
of the prediction if the user-centric models are exploited for
developing a collective or hybrid predictive approach.
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