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Abstract

The mental lexicon is a complex cognitive system representing informa-
tion about the words/concepts that one knows. Decades of psychological
experiments have shown that conceptual associations across multiple,
interactive cognitive levels can greatly influence word acquisition, stor-
age, and processing. How can semantic, phonological, syntactic, and other
types of conceptual associations be mapped within a coherent mathemat-
ical framework to study how the mental lexicon works? We here review
cognitive multilayer networks as a promising quantitative and interpreta-
tive framework for investigating the mental lexicon. Cognitive multilayer
networks can map multiple types of information at once, thus capturing
how different layers of associations might co-exist within the mental lex-
icon and influence cognitive processing. This review starts with a gentle
introduction to the structure and formalism of multilayer networks. We
then discuss quantitative mechanisms of psychological phenomena that
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2 Cognitive multilayer networks

could not be observed in single-layer networks and were only unveiled by
combining multiple layers of the lexicon: (i) multiplex viability highlights
language kernels and facilitative effects of knowledge processing in healthy
and clinical populations; (ii) multilayer community detection enables con-
textual meaning reconstruction depending on psycholinguistic features;
(iii) layer analysis can mediate latent interactions of mediation, suppres-
sion and facilitation for lexical access. By outlining novel quantitative per-
spectives where multilayer networks can shed light on cognitive knowledge
representations, also in next-generation brain/mind models, we discuss
key limitations and promising directions for cutting-edge future research.

Keywords: Cognitive modelling, multilayer networks, multiplex networks,
cognition, knowledge modelling, cognitive data science.

1 Introduction

The mental lexicon is a complex system where knowledge of the words and

concepts one knows can be represented as units that are combined and associ-

ated across multiple levels [1]. For example, phonemes combine to form words,

words combined in sentences express ideas, and sentences in narratives give rise

to stories [2, 3]. Focusing on the level of units of words (which provide meaning

even in isolation), deeper knowledge can be expressed by linking together units

that are associated in some way. Words can be associated in many ways [1, 4, 5].

For example, words may share meaning [6], sound similar [7], be syntactically

related [8], bring each other to mind [9], represent objects with similar semantic

or visual features [10], be written similarly [11] or evoke the same set of emo-

tions and affective states [12]. These are only some of the many ways in which

words can be associated [1, 2, 13] and give structure to the knowledge that one

has that can be expressed through language. Decades of research in psycholin-

guistics and cognitive science have examined how the words and concepts in the

mental lexicon are acquired, stored, processed, and retrieved [1, 5, 14]. Impor-

tantly, it has been shown that the structure and organisation of the words and
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concepts associated in some way in the mental lexicon influence a wide variety

of linguistic and cognitive phenomena, such as word confusability [2], picture

naming [15–17], and memory recall patterns for both neutral [9, 18–20] and

emotional information [21, 22]. The structure and organisation of the words and

concepts associated in some way in the mental lexicon can be influenced by var-

ious factors, including psychedelic drugs [23], and how creative [24], expert [25]

or curious [26] an individual is. All these findings converge on one point: Under-

standing the structure and organisation of knowledge in the mental lexicon is

important for shedding light on a number of phenomena. Understanding the

structure and organisation of knowledge in the mental lexicon requires a frame-

work that is quantitative [27], interpretable [28] and human-centric [29]. This

framework must: (i) be capable of producing inferences and comparable mea-

surements regulated by mathematical equations and theoretical models [16, 30]

(quantitative); (ii) map results to outputs through an internal representation

of knowledge available to researchers, unlike most black-box machine learning

knowledge models [21] (interpretable); and (iii) be grounded in psychological

theory and large-scale datasets in order to account for the complex nuances of

human psychology rather than make abstract inferences that are of little value

to psychologists [31, 32]. An artificial intelligence that categorises individuals

using binary labels like “aphasic” or “healthy” without identifying the sever-

ity of their language impairments, nor considers their ability to acquire, retain,

and produce new knowledge would not be human-centric [17]).

In the present review, we advance the idea of using multilayer networks to

model and understand the structure and organisation of knowledge in the men-

tal lexicon. We discuss recent work from multiple fields to show how multilayer

networks are a quantitative, interpretable, and human-centric framework that

can connect several disparate disciplines interested in modelling knowledge.
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Multilayer networks are a cutting-edge approach to explore how knowledge is

processed simultaneously across multiple levels. We outline 3 recent research

developments where the ability to combine different layers of associative knowl-

edge highlights phenomena that would be otherwise lost in single-layer network

analyses or through other modelling approaches like word embeddings [28].

We discuss key limitations of this framework and review potential approaches

for future research in cognitive modelling [33, 34] and cognitive neuroscience

[31, 35]. Combining evidence from fields as diverse yet interconnected as

cognitive psychology, complexity science, and computer science, our review

identifies concrete innovative ways in which multilayer networks can advance

our understanding of cognition.

2 Evidence for the multilayered nature of the

mental lexicon

Despite the name, the mental lexicon is not a simple dictionary [2, 5, 36, 37].

Concepts in the mental lexicon are not recalled in alphabetical order and the

recollection of an item is not independent of other concepts associated with

it [38, 39]. Aitchison [1] used the London tube as a metaphor for the mental

lexicon, where stations represent linguistic units and are connected according

to a layout of channels of different lengths. This analogy resonates with the

concept of a complex network, although the exact specification of structure,

function, and dynamics in the mental lexicon is more sophisticated [37]. Even

though the mental lexicon might not be a network itself, some of its associative

features might be accurately modelled by network science [39].

Many research findings indicate that information represented in the men-

tal lexicon is inherently multi-layered: Phonological, semantic, and syntactic
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aspects of language can simultaneously interact and influence language retrieval

and processing [5, 16, 40]. In healthy populations, the interaction of multi-

ple types of linguistic interactions in the mental lexicon is highlighted by the

phenomenon of the tip of the tongue [5], where an individual is aware of

the semantic features of a word but cannot produce it. This tip-of-the-tongue

state is characterised by a failure to retrieve phonological information, whereas

semantic activation seems to be intact [36, 41]. Another example of faulty

retrieval is known as a malapropism [36, 42] where a similar sounding word is

retrieved for another semantically appropriate one (e.g. “dancing a flamingo”

instead of “dancing a flamenco”). The faulty interaction between semantic and

phonological information of words can also explain the increase of mixed errors

in people with aphasia in a picture naming task [40].

Evidence for the multilayered nature of the mental lexicon comes also from

facilitative effects in word production like priming [1, 19, 38], i.e. when lexical

retrieval is facilitated by cues related to target words. Morphological content

(e.g. “dog” containing phonemes \d\, \o\and \g\), synonym similarities (e.g.

“character” and “nature” being synonyms), and syntactic relationships (e.g.

being a certain part of speech) were found to facilitate lexical retrieval through

priming indicating the simultaneous interplay between phonological, semantic,

and syntactic layers of the mental lexicon [37, 43]. These findings motivated

the formulation of the so-called cognitive linguistic theory [44], of serial lexical

access [40] and of cobweb theory [1], which all argue that language produc-

tion depends on a network of interacting layers of the mental lexicon, including

individual phonemes, word meaning, and sentence structuring. Given the inter-

action of various types of information in the lexicon, the framework of multilayer

networks becomes a natural way of analysing the structural and dynamical

complexity of the mental lexicon.
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3 From single-layer to multilayer networks as

models of cognition

Complex networks represent the structure of pairwise connections between

interacting entities [45]. Connections are usually called links or edges, and the

interacting entities are usually called nodes or vertices. A single-layer com-

plex network represents only one type of relationship between nodes. Instead,

both “multiplex” and “multilayer” networks include multiple types of relation-

ships between nodes [46]. For the sake of an easier visualisation and to fully

characterise the mathematics of such multilayer/multiplex networks, usually,

nodes are organised in sub-groups called network layers [47, 48], which identify

specific aspects of the pairwise interactions between individual nodes. A sin-

gle network layer is composed of a specific type of interaction between nodes

[49]. Links connecting nodes from the same network layer are called intra-layer

links. Links connecting any two nodes from different network layers are called

inter-layer links [46].

Whereas single-layer networks can account only for one type of associative

links, e.g. syntactic relationships [50], the main advantage of multilayer net-

works is the ability to combine multiple types of associations within a single

model [51–54]. The presence of multiple aspects or layers of associations can

give rise to phenomena greatly different from single-layer networks, such as

the presence of feedback loops across layers [53, 55], changes in the centrality

of individual nodes when multiple interactions are simultaneously present [46],

or the emergence of patterns of connectedness undetectable in the individual

layers [54, 56].

Both “multilayer” and “multiplex” networks have multiple network lay-

ers and represent multiple types of interactions, but these two terms are not
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synonyms [46, 52, 53]. Multilayer networks represent a more general category

of complex networks, whereas multiplex networks are a more specific network

model because they feature node alignment [54]. Node alignment means that

the same set of nodes are found in every network layer, with the same node

being connected across layers. The presence of explicitly weighted intra-layer

connections characterises full multiplex networks. Although Collins and Loftus

[14] discussed the idea of multilayer phonological/syntactic networks of concep-

tual associations in the 1970’s, Cong and Liu [57] were the first to implement

a multilayer representation of language representing syntactic and phonolog-

ical relationships between Mandarin words. Importantly, Martinčić-Ipšić and

colleagues [58] extended the multilayer formalism to Croatian and English,

highlighting several structural similarities between the two languages, which

differ in terms of the allocation of syllables across words. Without node align-

ment, multilayer networks can feature different sets of nodes across layers, see

Figure 1 (left). One layer might feature phonemes, linked to a layer of words by

several interlayer links expressing how phonemes occur in words. Words might

also be linked to another layer expressing their semantic features, the latter

being connected by intra-layer links expressing antonyms. Featuring different

nodes across different layers makes the mathematics describing multilayer net-

works considerably more advanced than the mathematics behind multiplex

networks [46, 51]. Whereas a multiplex network can be described with matri-

ces, multilayer networks require the use of tensors to represent them (for more

details, see [52] and [53]).

Multilayer networks featuring node alignment are called multiplex networks

[54]. Node alignment requires the same set of nodes to be replicated across

all layers of a multiplex network, see also Figure 1 (right), where alignment is
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represented by dashed lines. Even if a node is disconnected on one layer of a mul-

tiplex network, but highly connected on another layer the node has to appear

in both layers. All the replicas of a given node represent different aspects of the

same entity, e.g. a phonological word form engaging in phonological relation-

ships on a given layer and a lexical representation of the same word involved

in conceptual associations on another layer [13, 59]. Replica nodes identify the

so-called physical node, e.g. in the above example the phonological form and

the lexical representation are replicas identifying the same word/physical node

[52, 53, 56]. Figure 1 provides an example of a multilayer language network,

analogous to pioneering work by Cong and Liu [57], and a multiplex lexical net-

work, analogous to pioneering work by Stella and colleagues [49]. The layered

structure of multilayer and multiplex networks enables the possibility to include

both semantic and phonological features of linguistic units. For instance, Figure

1 (left) identifies semantic features and phoneme occurrences of words (as in

[58]), whereas Figure 1 (right) maps semantic overlap, phonological similarities

and free associations between words (as in [59]). Notice that in multiplex net-

works it is only the type of interactions among nodes that changes across layers,

whereas multilayer networks allow for a more flexible structure with the possi-

bility of different types of nodes across layers. Notice also that in the absence of

explicitly weighted intra-layer links, multiplex networks become edge-coloured

graphs [8, 54], where connections of different types are coloured differently. The

presence of multiple layers/interactions alters drastically the connectivity of

words compared to their single-layer layouts [57, 58]. For instance, in Figure

1 (right), ”mat” is disconnected on the free association layer but connected to

”cat” on the phonological layer. Multiple layers also give rise to edge overlap

across different aspects of associative knowledge, e.g. ”kitty” and ”cat” share

a connection on both the free association and the semantic overlap layers, an
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Fig. 1 Examples of a multilayer language network (left, [57]) and of a multiplex network
(right, [49]). If inter-layer connections were all unweighted, the multiplex network would be
an edge-coloured graph with three colors (free associations, semantic overlap and phono-
logical similarities). The multilayer language network maps semantic features and phoneme
occurrence in words. Node alignment, the replication of the same set of nodes across layers,
is a feature characterising multiplex networks.

overlap that cannot be measured when layers are considered as separate, single

components [60]. In the following, we review how multilayer/multiplex net-

works can identify and quantify cognitive patterns that would go undetected

using standard single-layer networks.

4 Cognitive patterns highlighted by multilayer

networks but invisible to single-layer networks

Multilayer networks take into account more than one type of relationship among

nodes at once, thus giving rise to more complex structures and phenomena that

cannot be observed in single-layer networks. This section reviews key ways in

which multilayer networks have been shown to differ from single-layer networks.

We discuss these quantitative differences in relation to the relevant psychology

literature, and consider the overall benefits, limitations, and roads for future

research of multilayer networks as models of cognition.
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4.1 Multiplex viability highlights language kernels in the

mental lexicon invisible to single-layer networks

As in single-layer networks [27], the collection of all intra-layer and inter-layer

links connecting nodes i and j also represents a path in multilayer networks [46].

For instance, in Figure 1 (right) there is a multilayer path connecting “mat”

and “kitty” through the intra-layer link “mat (phonological)” - “cat (phono-

logical)”, the interlayer link “cat (phonological)” - “cat (semantic overlap)”

and the intra-layer connection “cat (semantic overlap)” - “kitty (semantic over-

lap)”. In contrast to describing a path between nodes in a single-layer network,

in multilayer paths it is necessary to specify the layers of nodes to distinguish

intra- and inter-layer links. In edge-coloured multiplex networks, this distinc-

tion is not necessary but links of different colours must be kept separate [60, 61].

Assuming specific weights for inter- and intra-layer links enables the defini-

tion of the shortest path length, i.e. the minimum total weight or number of

links necessary for traversing a path between any two nodes. In edge-coloured

graphs, the shortest path length (also called network distance or geodesic net-

work distance) considers only intra-layer links and can be defined as the smallest

number of links of any colour connecting any two nodes [21]. Without consid-

ering explicit inter-layer connections, the network distance between “mat” and

“kitty” would be 2 in Figure 1 (left). Ultimately, the possibility of “jumping”

across layers enhances the connectivity of multilayer networks. Multilayer short-

est path lengths were shown to significantly predict cognitive phenomena like

early word acquisition [49, 62–64], semantic relatedness [65] and picture nam-

ing production in people with aphasia [15, 17]. In all of these studies, multiplex

network distances achieved better model performances than their single-layer
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counterparts, thus providing quantitative, converging evidence that the abil-

ity to transition between layers enabled by multilayer networks is crucial to

modelling the interactive aspects of the mental lexicon.

Interactions between different aspects of the lexicon might be modelled

through explicit [65, 66] or latent [67] patterns of connectivity between nodes in

different layers. Whereas we discuss latent patterns in Subsection 4.3, here we

focus on explicit interactions arising from connectivity patterns. Transitioning

between multiple layers gives rise to multiple ways of defining connectedness in

multilayer networks, see Figure 2. In single-layer networks, two nodes are con-

nected if there exists a path between them [45]. Analogously, several works on

multilayer and multiplex networks defined connectedness as depending on the

existence of a multilayer path between any two nodes [51, 52, 56]. The largest

connected component can then be defined as the largest set of nodes connected

by at least one multilayer path [46, 54, 59, 66]. This definition can be modi-

fied in the presence of explicitly defined inter-layer links [46]. Importantly, the

presence of several layers can give rise to additional definitions of connectivity

that differ from their single-layer counterparts [45], thus giving rise to phenom-

ena unobserved in single-layer networks, such as the identification of language

kernels [1, 68].

The above multilayer definition of connectedness [46] exploits links present

in either one layer or others. This combinatorial “OR” approach is different

from requiring the presence of connected paths across one layer and others.

Other works [46, 69, 70] considered viability as a definition of connectedness

based on an “AND” logic: In a multilayer network, two nodes are viably con-

nected if there exist intra-layer paths connecting those two nodes on every

single layer. Intra-layer paths are confined to a single path, e.g. paths using

links of only one colour. A largest viable component (LVC) is the largest set of
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Fig. 2 In multiplex lexical networks, connectivity can be defined either in terms of connected
components or in terms of viable clusters. The largest connected component (LCC, orange)
is the largest set of nodes connected by at least one path with links of any colour. The largest
viable cluster (LVC, pink) is the largest set of nodes connected simultaneously on all layers
by at least one path with links of the same colour. The LVC is a more restrictive version of
the LCC but the two coincide in single-layer networks.

viably connected nodes [13, 70]. As highlighted in Figure 2, the requirement of

intra-layer connectedness across all layers (i.e. viability) is considerably more

restrictive than the above definition of connectedness. This distinction natu-

rally leads to the question of understanding whether connected components

and viable components might differ in their structure when modelling cognitive

aspects of the mental lexicon[59], e.g. contain different sets of concepts. Note

that in single-layer networks, the largest viable cluster and the largest con-

nected component (LCC) would be the same [69]. However, the LVC and the

LCC would differ on multilayer networks made of different layers, potentially

giving rise to phenomena unexpected in single-layer cognitive networks [27].
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4.1.1 The LVC corresponds to a spurt in language learning

The first quantitative evidence characterising the cognitive relevance of LVCs

was [59]. The authors identified an LVC of 1000 words in a representation of the

mental lexicon with an LCC of 8000 English words, connected across 4 seman-

tic/syntactic/phonological layers. Bringing together multiple psycholinguistic

datasets, the authors simulated the growth of the LVC over time according to

normative age of acquisition norms, imitating the order in which most native

English speakers acquire concepts over time. Whereas the LCC grew smoothly

over time, the LVC appeared with a sudden, discontinuous phase transition

(called also explosive [70]) around age 7-8 yrs, a critical age for the develop-

ment of reading and reasoning skills in typically developing children [71, 72].

The LVC was also found to be rich in shorter and higher frequency/poly-

semy/concreteness words (compared to the LCC). When partitioning words

as inside/outside of the LVC, each multiplex layer exhibited a core-periphery

structure [45], with the LVC representing a network core, i.e. a set of tightly

linked high-degree nodes connecting more peripheral low-degree nodes. Fur-

thermore, when removing words in the LVC from the multiplex lexical network,

the average network distance between words increased considerably more than

removing words outside of the LVC but with a matched degree. Since distance

in cognitive networks refers to conceptual similarities [21, 27] and shorter dis-

tance corresponds to quicker conceptual processing (cf. [2, 19, 38]), this pattern

indicates a beneficial role played by nodes in the LVC in providing shortcuts of

conceptual associations between other concepts. Noticeably no LVC was found

when the phonological layer was excluded from the analysis, suggesting that

phonological associations are key to identifying the LVC. Given all of these

characteristics of the LVC, Stella and colleagues suggested that the LVC was

a language kernel in the mental lexicon [68]. That is, the LVC is a sample of
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highly frequent yet simple words that are prominent (e.g. well connected) in

language and whose availability enables communicative advantages [1, 68, 73].

4.1.2 The LVC identifies changes in mental navigation related

to variation in creativity

Subsequent research using the LVC recently demonstrated its ability to classify

low- and high- creative individuals [74]. Stella and Kenett analysed performance

in a semantic fluency task, as an operationalisation of a mental navigation task

that operates over memory when searching internally [23, 75, 76]. In that task,

participants are required to generate as many category members as possible, in

a given amount of time. Computational methods allow examining how people

search through their memory [76–78], tracing the paths they traverse over rep-

resentations of their mental lexicon [39]. Often, this task is based on the animal

category [78, 79], i.e. name as many animals as possible in 2 minutes. Specifi-

cally, Stella and Kenett re-analysed animal fluency data generated by low- and

high- creative individuals, collected by Kenett and colleagues [33].

To achieve creativity classification, the authors used a multiplex network to

represent lexical memory over the same four layers used in prior work [66] but

extended to 16000 English words and exhibiting an LVC with over 1.1k words,

see Figure 3. Stella and Kenett examined computationally the way people

exploited their memory, and classified participants into low- and high- creative

individuals, based on the way they ”walked” on the multiplex network, through

the LVC. In other words, the authors analysed participants’ measures of navi-

gating over the cognitive multiplex network focusing on the LVC. The authors

found that the low- and high- creative individuals differed in several cognitive

multiplex measures, largely focusing on how they rely in their performance on
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Fig. 3 Illustration of the process taken by Stella and Kenett in their study [74]. First, the
authors constructed a cognitive multiplex network (top left). next, the authors quantitatively
examined participants’ semantic fluency responses as a mental navigation process over the
cognitive multiplex network (top right). Participants’ measures of how they explore the cog-
nitive multiplex network when searching for animal names was then used to build a machine
learning model to classify participants in low or high creative individuals. This predictive
model was highly successful in classifying participants into their correct group of low- and
high-creative individuals (bottom).

the LVC, and in the number of responses they are able to generate. Individu-

als with lower creativity accessed the LVC considerably more than those with

higher creativity, suggesting a beneficial role for the LVC to support recall in

people unable to employ other cognitive strategies to achieve higher levels of

creativity. Such distinctive patterns were measured through network access, dis-

tance, and entropy, and became a set of features in an artificial intelligence (AI)
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model that was trained to categorise high/low creativity levels from network

measures of LVC access. In a leave-one-out cross-validation, the AI achieved an

accuracy of 65±1% (compared to a baseline of 50% for random guessing), indi-

cating that multiplex viability may influence conceptual recall and high-level

cognitive strategies related to creativity [24, 80].

Overall, the work of Stella and Kenett is significant in two ways. First, it

demonstrates how a viable component in a multiplex network can be used to

examine complex cognitive processes, such as mental navigation operationalised

via a semantic fluency task. Second, the LVC can be used to extract fea-

tures and construct machine learning predictive models, successfully predicting

how people vary on complex cognitive capacities, such as creativity. Such evi-

dence opens up the door to additional, future studies in representing complex

cognitive processes and capacities.

4.1.3 The LVC supports correct picture naming in people

with aphasia

Another example illustrating an advantage for words in the LVC comes from

picture naming in people with aphasia. In a picture naming task individuals

are visually presented a line drawing or photograph and asked to name the

object that is depicted, a task formalised in the Philadelphia Naming Test

(PNT), a 175-item picture naming test developed in the Language and Apha-

sia Lab of MRRI [81]. Aphasia describes a spectrum of language disorders,

impacting word processing, understanding and production [40]. Castro and col-

leagues [15, 17] investigated picture naming through a multiplex lexical network

with 8000 words linked by free associations, hypernyms/hyponyms, phonologi-

cal similarities, and synonyms. The authors found that multiplex distance was

important for predicting not only the rate of correct picture naming [15] but
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also the types of mistakes made by people with aphasia [17]. Higher predictive

power in the first (regression) and second (multinomial regression) tasks were

achieved when multilayer distances were used, rather than considering network

layers in isolation. Building on those findings, Stella [13] discovered that items

in the LVC were named correctly with rates at least 30% higher than items

found outside of the LVC. Further, through network attacks accounting for fre-

quency, degree, and word length effects, the author found that the probability

of correct production in PNT could efficiently identify words within the LVC

(compared to random guessing [13]). Together these results suggest that words

in the LVC might benefit from enhanced lexical retrieval mechanisms that in

clinical populations leads to more accurate production of words in the LVC

(as measured by the PNT [13]), and in healthy populations supports recall in

individuals with lower creativity levels [74].

To sum up, in multilayer representations of the mental lexicon, viability can

identify a language kernel that has interesting features for cognitive processing.

This kernel emerges from the interactive nature of semantic and phonological

associations [59, 65], and facilitates cognitive processing in both healthy and

clinical populations. Importantly, it is not possible to identify such a kernel in

single-layer networks that model only part of the mental lexicon [49, 63, 74],

highlighting the importance of using the multilayered network approach to shed

light on cognitive representation and processing. Future research should further

investigate clusters like the LVC and identify new ones, potentially arising from

other types of relationships among words or by including other pieces of lexical

information in the network [64]. The clusters that are discovered in multilayer

networks could lead to novel insights and provide quantitative ways to examine

cognitive processing [34], creativity [80], cognitive functions in altered states of
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conscience [23] and language acquisition [64], among other processes relevant

to cognitive network science [16, 27].

4.2 Community detection in multilayer networks

highlights shortcuts between semantic themes

A community is a group of nodes more closely or tightly connected to each

other than with nodes belonging to other groups [82]. Community detection

is the task of decomposing a network into well-connected and well-separated

groups of nodes, and it is one of the most challenging problems in complex net-

work analysis [83], in part because of the different topological criteria adopted

to define a ”community” [45]. Community detection algorithms, used to iden-

tify communities in a network, can be classified according to the way they

approach the community detection task [82, 84, 85]. The most common algo-

rithmic approaches used to partition single-layer networks fall into two classes,

adopting either (i) the well-known modularity-based optimisation scheme (see

for details [82]) or (ii) the concept of k-cliques - subgraphs where all nodes

are adjacent to each other and have degree k - to extract sets of overlapping

communities [84]. Both community detection approaches have found clusters

of words sharing similar linguistic traits in single-layer networks, like shared

sequences of phonemes in phonological networks [86], or concepts falling in the

same semantic field (found in a free association network [84] and in a syntactic

network [87]).

The task of community detection is more complicated in multilayer net-

works, because the community detection algorithm must consider the different

types of relationships occurring in different layers at the same time [88]. Mul-

tilayer community detection algorithms are classified according to the strategy

chosen to handle the presence of multiple layers:
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• Flattening methods reduce all layers into a single one, making the structure

suitable for classic community detection [89]. This approach was used by

Vukić and colleagues, who identified different semantic fields of ”database”

via community detection in a multilayer network with factual, conceptual,

procedural, and metacognitive connections between concepts [61].

• Layer by layer methods process layers independently before merging the final

list of communities through consensus, [90].

• Multilayer methods act directly on the multilayer structure, finding commu-

nities by transitioning across the layers. In this class of methods, we find

extensions of the modularity-based approaches in single-layer networks to

multilayer networks. Examples of this approach include GLouvain [91] or the

multilayer extension [92] of the Infomap algorithm [93].

Choosing the most suitable community detection method for a multiplex or

multilayer lexical network is a challenge to cutting-edge research in cognitive

networks. Only a few works indirectly addressed this problem so far. Kovács

and colleagues [95] analysed the multilayer network structure of semantic, syn-

tactic and phonological associations of several languages, including English and

Hungarian. Using a modularity maximisation approach, they found that larger

communities tended to reflect mostly semantic associations, whereas smaller

communities encoded encyclopedic knowledge [95]. Interestingly, the task of

grouping nodes in a multilayered network is tied to the task of detecting commu-

nities in attributed networks, where nodes also possess categorical information

or features [96]. In this direction, Citraro and Rossetti [94] recently tackled

community detection in multilayer lexical networks by introducing the Extend-

ing to Vertex Attributes Louvain or EVA method. Their approach extends the

modularity-based optimisation function [82] to a multi-objective criterion forc-

ing communities to be homogeneous to the features carried by the nodes and
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Fig. 4 (A): Attribute-aware community detection in a toy multilayer lexical network: a
toy partition for word length (left) and valence (right). Results from [94] (B-C): different
attributes correlate with different layers (B); a toy example of matched communities on the
semantic (blue links), phonological (red links), and multiplex (mixed links) lexical structure
for the arousal property (C).

across different network layers. The authors tested the multiplex mental lexi-

con built in [59] and enriched with lexical features such as word length, valence,

arousal, dominance, semantic size of denoted words and gender association

(from the Glasgow dataset [97]).
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4.2.1 Multiplexity highlights shortcuts between concept

communities in a phonological/semantic multiplex

model

Figure 4 (A) sums up with a toy example of what community detection algo-

rithms that are also sensitive to the features attributed to each node can reveal

in multilayer lexical networks. Analysing the aggregated multiplex structure

obscures the variation in feature homogeneity across layers. For instance, when

forcing communities to be homogeneous for word length modularity shows a

very fast decrease in the semantic layers, but remains stable in the phonological

layer (Figure 4 (B)).

Two main results emerged from the feature-rich multiplex mental lexi-

con (with 4000 words and 2 layers, i.e. free associations and phonological

similarities) analysed by Citraro and Rossetti [94]:

1. Communities extracted by EVA reflect thematic contexts: Concepts can

fall within different contexts according to the psycholinguistic features used

to perform community detection, even keeping the network fixed. In other

words, one network can give rise to many sets of communities according

to the feature selected for EVA. For instance, ”star” belonged to a com-

munity of words relative to astrophysics when semantic size was used as

a feature for community detection on the semantic layer. On the same

layer, ”star” belonged to a community of words relative to ”shining” when

arousal was used instead (see also Figure 4 C). Such thematic coherence and

context swapping were not observed in the phonological layer. These find-

ings indicate an important interplay between semantic features (e.g. ”being

astrophysics objects”, ”shining”) and semantic layers in multiplex networks,

which should be treated differently from phonological similarities. While it
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is intuitively expected for semantic features to influence thematic coherence

more prominently on semantic rather than phonological networks [1], these

quantitative models open the way to mapping and exploring the interplay

between psycholinguistic norms and network structure (see also [64]);

2. As illustrated within Figure 4 C, semantic links provide shortcuts between

different clusters of phonologically similar words that would otherwise be

at a greater network distance. This happens because the homogeneity of

the same feature (e.g. arousal) over communities spanning different lay-

ers changes significantly across layers. Although less thematically cohesive,

the multiplex network structure provides shortcuts that make single-layer

communities overlap with each other. Recent investigations indicated that

semantic and phonological connections are systematically better than ran-

dom links in decreasing the average network distance between words [65].

Hence the observed overlap in communities from different layers might be

due to a potential cognitive benefit, worthy of further research.

4.3 Finding hidden interactions between two or more

layers: Mediation, suppression and other

layer-interaction mechanisms

Given that multiplex networks encode different aspects of the mental lexicon

in different layers, one might ask: “How similar are layers of a given multiplex

network?”. The similarity between layers of multiplex networks has so far been

addressed in pairwise comparisons, using spectral and information-theoretic

distance metrics [47, 48, 98–102].

Akin to what happens with pairwise correlations (and to address analo-

gous issues related to the disambiguation of directed and mediated influences),

looking at mediation and suppression is a convenient solution [103]. Consider
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Fig. 5 Schematic representations of triplets of adjacency matrices, where only the position
of the edges (ones in the matrix) are highlighted as symbols (dots of different colours, crosses).
Symbols are chosen to schematically highlight how mediation and suppression operate. In
the mediation example - top row - Network C mediates a relationship between A and B by
sharing many links with both of them (red crosses). Most other links in A and B are different
(blue and black dots), only a small fraction of them is shared directly by A and B (yellow
dots). In the suppression example - bottom row - B shares many links with both A (black
dots) and C (red crosses), however the links that are common to A and C (yellow dots) are
suppressed in B. B contains also other links (blue dots). Reproduced from [103], copyright
the authors.

the example of a free association network (words bring each other to mind [9])

and of a phonological network (words sound similar [7]). These different layers

might display a small level of correlation since words sounding similar to each

other tend also to be recalled together in free association tasks (as measured

in [49] with link overlap). However, this similarity might be due to directional

relationships: Sound similarity might likely give rise to a memory recall pattern

[34]. Alternatively, this influence might not be directly evident. Analogous to

latent variables in psychometrics [104], there might be a hidden network layer

of conceptual associations that either confounds or mediates the relationship

between phonological similarities and free associations or other pairs of layers

in the mental lexicon.
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Mediation analysis is well-established in some fields like psychometrics [105],

but relatively unexplored in others like cognitive neuroscience [106] and cog-

nitive networks [27]. A recent study [103] introduces a framework to quantify

mediation and suppression between networks. In the case of mediation, and

referring to Figure 5, A and B are both dependent on C, such that if there is a

link in C, then there is a link in A and B. For suppression, B depends on the

interaction of A and C such that, an edge occurs in B with a certain probability

if it appears in A but not in C, or if it appears in C but not in A.

The applications so far involved social networks (online, professional, per-

sonal interactions), and mesoscale connectomes in the complete C. elegans

nervous system [103]. In lexical networks this approach could address ques-

tions such as: ”Are semantic associations more likely to occur if there is

semantic overlap but not phonological similarity?” If we consider factual and

metacognitive layers in a knowledge network, this approach could be com-

bined with the multiplex representation introduced by Vukić and colleagues to

identify mediation and suppression mechanisms in processing domain knowl-

edge [61]. Both the above examples could not be investigated with single-layer

networks, highlighting the importance of using multilayer networks and medi-

ation and suppression techniques to detect latent relationships in data due to

layer-interaction mechanisms.

A concrete example of the relevance of layer-interaction mechanisms in

exploring cognition comes from recent multilayer investigations of the issue of

lexical access [65]. Classic linguistic theories assume that in order to compre-

hend or produce meaningful linguistic output, one needs to access and retrieve

information from their mental lexicon, a process known as lexical access [1].

Lexical access involves multiple processes of representation, in particular, a

semantic word-meaning process and a phonological wordform mapping process,
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that allow access and retrieval from the mental lexicon [107, 108]. However,

whether the relation between these two processes is serial, parallel, or inter-

active is still debated [107, 109]. The modular account argues for a detailed

process between two discrete modular processes of lexical access. According to

this account, during lexical access of a linguistic input, phonological processing

takes place only after semantic processing is completed. The cascading account

argues for a more relaxed modular account. According to this model, phono-

logical processing can initiate before semantic processing is complete. Finally,

the interactive model theorises that lexical access involves an interactive spread

of information across a phonological layer and a semantic layer that can influ-

ence each other [40, 107]. This model argues that both layers are structured

as a network and that information spreads across these two networks, related

to the organisation of concepts across both layers and to the strength of links

that connect them. However, the specific model of lexical access is still debate.

4.3.1 Layer-interaction mechanisms in a

phonological/semantic multiplex network

In a recent study, Levy and colleagues [65] applied a cognitive multilayer net-

work analysis to directly analyse and quantify the relation between phonological

and semantic networks, motivated by the interactive model of language pro-

cessing [107]. To do so, the authors constructed a large-scale multilayer network

comprised of empirical phonological and semantic layers (see Figure 6), for a

large-scale network of about 9000 words [18]. The authors then conducted the

following analyses: First, they examined the similarity between the two layers

by measuring their link overlap. Next, they measured the effect of adding non-

overlapping links from one layer to the other. Finally, Levy et al. examined the

potential benefit of combining both layers as a multilayer network on lexical
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Fig. 6 Top: Multiplex network of semantic and phonological layers constructed by Levy
et al. (2021). (A) Illustration of the overlap across the (weighted) semantic layer and the
(unweighted) phonological layer. (B) Illustration of the multiplex network with nodes and
links across both semantic and phonological layers.Bottom: The multilayer network is more
quickly accessible than the semantic network (C). Reaction times (RTs) for relatedness
judgments in the Kumar, Balota, and Steyvers (2020) network (Green), Levy et al. (2021)
semantic network (Orange) and the Levy et al. (2021) multilayer network (Blue). Error bars
for the Levy et al. (2021) networks represent standard deviations of the average RT. The error
bar of the Kumar, Balota, and Steyvers (2020) network represents the standard deviation of
averages of subsets of RTs.

access, by measuring the networks’ average distances of the single layers versus

the multiplex [65].

Overall, the authors found that overlapping links across both layers are

highly similar, that adding non-overlapping links from one layer to the other

leads to reduced distances between concepts. Furthermore, a multilayer net-

work representation has the shortest average shortest paths, indicating that it

leads to the most efficient linguistic processing. Thus the authors argue that

the interaction between these two layers might be crucial for allowing more
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efficient lexical access, by reducing path distances between nodes in a cogni-

tive multilayer network [65]. For example, in the phonological layer, the cue

words intend and invest had a path distance of three (intend → intent → invent

→ invest). However, in the semantic layer these cue words intend and invest

are directly connected, see Figure 6 (B). Thus, in a multilayer phonological-

semantic network, the distance between intend and invest is much shorter than

in a phonological only network, enhancing the lexicon’s efficiency in lexical

access even in potential impairments [15, 17].

To demonstrate the validity of their claims regarding the heightened effi-

ciency of the cognitive multilayer network representation in lexical access, Levy

and colleagues re-analysed empirical data collected by Kumar and colleagues

[38]. The latter estimated a large-scale semantic network based on the Univer-

sity of South Florida Free Association Norms, generated to a list of 5000 cues

[110]. Kumar and colleagues aimed to replicate and extend a previous study by

Kenett and colleagues on the impact of semantic network distance on behaviour

[19]. To do so, Kumar and colleagues had participants make relatedness judge-

ments to pairs of cue words that varied in the semantic distance between the

words based on the path length in their semantic network for those two words

[38]. Levy and colleagues examined the data collected by [38] in the following

way: First, they identified links from the Kumar et al. semantic network that

corresponded with their semantic network. Then, the authors compare RT col-

lected by Kumar et al. to various semantic distances (1-4 steps) of the Kumar

et al. semantic network, the Levy et al. semantic network, and the Levy et al.

multilayer network. The authors show that overall, similar distance effects on

RT were consistent across all three examined networks [65]. However, the mul-

tilayer network predicted shorter RT responses than either semantic network

highlighting its heightened efficiency in lexical access, see Figure 6 (C).



28 Cognitive multilayer networks

Overall, the multilayer approach by Levy and colleagues demonstrates the

strength of applying a cognitive multilayer network analysis to examine classic

cognitive theories, such as on the nature of lexical access [65]. It also demon-

strates the feasibility of combining computational modelling with empirical

research to advance cognitive research.

5 Discussion, limitations and future directions

Recent work using multilayered networks in cognitive science has revealed key

insights that would not have been observed using single-layer networks. This

work has examined cognitive processing in healthy [49, 59, 62, 65, 74] and

clinical populations [15, 17, 49], revealed clusters and communities reflecting

different contexts and meanings of individual concepts [61, 64, 94, 95], and dis-

covered latent mediation/suppression interactions between different aspects of

knowledge [61, 67]. These findings illustrate the potential for multilayer net-

works to advance the cognitive sciences using a quantitative, interpretable, and

human-centric framework. Multilayer networks give structure to the represen-

tations found in interactive layers of the mental lexicon (quantitative [60]).

This structure can be interpreted using various network measures, such as net-

work distance and concept relatedness (interpretability, e.g. [19, 38]), and may

account for the complexity of the human mind (human-centric [63]).

Although the use of multilayer networks has much potential, this approach

also has some limitations, which naturally lead to crucial directions for future

research. For example, in most cases (including the examples presented here)

links are defined between pairs of nodes. In some cases, it may be more useful

to create a set of nodes instead of simply pairs of nodes to form a hyper-

graph. For example, several actors feature in scenes in movies without just
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co-occurring with each other, or more than two words in a sentence might mod-

ify its meaning. Hypergraphs are being increasingly studied and applied [54] to

account for simultaneous interactions between more than two entities at once.

From a cognitive perspective, hypergraphs could be structured across multilay-

er/multiplex structures either by building links through information-theoretic

measures [67] or by considering other interaction patterns between concepts

(e.g. phonological similarities between words sharing the same skeleton of vow-

els and consonants [73]). In either case, future research using the hypergraph

approach could potentially reveal higher-order behaviours that are not observ-

able with pairwise relationships, perhaps identifying communities of concepts

reflecting specific semantic fields [87] or contexts of usage [64].

Multilayer networks contain several network layers and thus correspond to

an increased chance of mistakes in assessing whether two concepts should be

connected or not, such as whether two concepts are syntactically related in

speech [111, 112] or in text [8]. Mechanisms for link prediction or noise correc-

tion should thus be applied to next-generation multilayer models of the mental

lexicon. Bayesian inference can identify errors in a given network layer even in

the presence of unknown and heterogenous uncertainty [113]. The formalism

proposed by Peixoto checks for the presence of connections between different

clusters of nodes, using structured generative network models to infer the pres-

ence/faulty presence of individual links even without direct error estimates.

This approach could filter layers of free associations [9] or other types of seman-

tic/syntactic datasets [114], lessening the impact of noise over the multilayer

structure.

Single-layer and multilayer networks are useful constructs to make sense

of complex and multivariate systems [45], but they remain modelling prox-

ies. The mental lexicon might not look like a network in some specific
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instances, as recently discussed by Hills and Kenett [39]. Alternative modelling

approaches should thus be pursued in parallel with multilayer networks, lead-

ing to next-generation studies where multiple models are compared or used

together. Word embeddings [3, 10, 38, 112] represent promising alternative

modelling approaches, giving more emphasis to the vector-like nature of fea-

tures associated with individual concepts. Frameworks encompassing vectors

and multilayer networks to model the mental lexicon, like the FERMULEX

approach by Citraro and colleagues [64], represents an interesting attempt to

capture the complexity of mental representations.

Building network models that minimise redundant features while max-

imising informativeness (e.g. prediction power about word norms [97]) under

potential uncertainty is becoming increasingly relevant in quantitative psy-

chology, especially network psychometrics [104, 115]. A current limitation of

cognitive multilayer networks is the selection of which layers to include and

which to discard when building a representation of the mental lexicon [49].

Adding more network layers can provide more information about connectivity

patterns between concepts but, at the same time, it can add unnecessary redun-

dancy [48]. This limitation can be addressed in two ways. First, representations

of the mental lexicon should include only the layers that are relevant for a spe-

cific task. For example, to model the process of reading the interplay between

phonology and orthography requires both layers [11]. Second, once relevant lay-

ers have been selected, additional tools from information theory can quantify

the amount of redundant information embedded in a given combination of lay-

ers. Structural reducibility analysis [47] and compressibility [48] can identify

the best combination of network layers maximising information gain compared

to a baseline model where all layers are aggregated together. Information gain
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could be implemented in different ways [48]. In multiplex networks, the max-

imisation of the Von Neumann entropy was shown to successfully identify those

layers providing the most information about node connectivity [47]. The exper-

imenter should thus check whether a preliminary representation of the mental

lexicon could be further aggregated or compressed via entropy maximisation,

which would indicate the presence of redundant layers to be aggregated with

each other to limit the number of layers to be considered. These approaches

unveiled that many social and technological multilayer networks exhibited mod-

erate redundancy [47, 48, 100] and could be further reduced/compressed in

structure. This was not the case for all multiplex lexical networks reviewed here,

which showed how semantic, syntactic, and phonological aspects of words cap-

tured very different, and thus irreducible, patterns of connectivity [49, 59, 74].

Future research should combine informed designs and information-theoretic

tools to better select appropriate layers for and reduce redundancy in a given

multilayer model of the mental lexicon.

Importantly, networks are not only being used to understand the complexity

of the human mind [7, 39, 66], but are also being employed to understand the

complexity of the human brain [116–119]. These single-layer networks of the

brain may connect brain regions that are physically connected or brain regions

that are active at the same time. An ambitious goal for future research is to use

the multilayer network approach to connect the cognitive network layer to the

brain network layer to finally bridge the intangible mind and the physical brain

[31, 34]. At present, it is not clear how many network layers would be needed

to accomplish this, or what those intermediate network layers might represent.

It is also not clear if the spread or diffusion of activation that is commonly

used to model cognitive processing in cognitive network models [3, 34] is an

appropriate mechanism to model the processes that occur at other network
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layers. Connecting the mind and the brain using multilayer networks may seem

like an elusive goal, but we need only look to the Internet for an existence-

proof of a physical network (i.e., the fiber-optic cables that envelope the world)

bridging to the intangible social networks that emerge on software platforms like

Facebook, Twitter, etc. (whose information is transmitted across those fiber-

optic cables). Future research bridging cognitive and brain networks within

multilayer, feature-rich frameworks might contribute to building a quantitative

understanding of how the brain stores conceptual representations of words,

which represents an intriguing brain/mind puzzle [35].

6 Conclusions

Cognitive multilayer networks can map multiple types of cognitive information

at once. Their quantitative framework can thus model how different types of

associations might co-exist within the mental lexicon and influence cognitive

processing. This review has highlighted several pioneering studies unearthing

mechanisms of psychological phenomena that could not be observed in single-

layer cognitive networks. The phenomena that were only unveiled by the

combination of multiple layers of associative knowledge included: (i) multiplex

viability as a booster of lexical search and processing in people with lower

creativity, shielding words from degraded production in people with aphasia,

(ii) multilayer community detection as a way to highlight thematic clusters of

concepts shaped by psycholinguistic norms and linked by multilayer shortcuts,

and (iii) layer-layer correlations as interactive mechanisms between phonologi-

cal and semantic similarities in lexical processing. In addition to describing the

novel quantitative perspectives where multilayer networks can shed light on

knowledge representations in the mental lexicon and in potential brain/mind

models, we have discussed key limitations and promising directions for future
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research. The formalism covered in this review thus opens the way to next-

generation quantitative frameworks of cognition able to model multivariate

psychological data.
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